# Stormtech Pty Ltd Slimline Drainage systems Stainless Steel and PVC

Company Adress: 22 Norfolk Ave., South Nowra NSW 2541 Australia. EPD No: STSL01EP2024 and STSL02EP2024 Issue date :05 Dec 2024 Valid To: 05 Dec 2029 Version 1 Revision Date NA







EN15804+A2 2019 & ISO14025 Compliant







**Mandatory Disclosures** 

| Manualory Disclosures          |                                                                                                                                                                                                                            | Janua Data                                                                                                                                                                                                                                                                                   | 05 D 0004                                                                                                                                   |  |  |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| EPD type                       | Cradle to grave A1 to C4 + E                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              | 05 Dec 2024                                                                                                                                 |  |  |  |  |  |
| Product Range                  | Slimline Drainage systems                                                                                                                                                                                                  | Valid Until                                                                                                                                                                                                                                                                                  | 05 Dec 2029                                                                                                                                 |  |  |  |  |  |
| Brand Name                     | Stainless Steel and Composite uPVC/SS drains                                                                                                                                                                               |                                                                                                                                                                                                                                                                                              |                                                                                                                                             |  |  |  |  |  |
| Product Code                   | Stainless Slimline 'i' series d                                                                                                                                                                                            | rains Composite Slim                                                                                                                                                                                                                                                                         | line 'G' series drains                                                                                                                      |  |  |  |  |  |
| EPD Number                     | STSL01EP2024                                                                                                                                                                                                               | STSL02EP2024                                                                                                                                                                                                                                                                                 | Ļ                                                                                                                                           |  |  |  |  |  |
| Communication                  | environmental outcomes cor<br>to-business plus mandatory                                                                                                                                                                   | This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with EN 15804 for communicating business-to-business plus mandatory independent external EPD and data verification according to ISO 14025:2010 for communicating business-to-consumer [2]. |                                                                                                                                             |  |  |  |  |  |
| Comparability                  | Construction product EPDs<br>Different program EPDs m<br>dependent on the product ca                                                                                                                                       | nay not be comparable. C                                                                                                                                                                                                                                                                     | comparability is further                                                                                                                    |  |  |  |  |  |
| Reliability                    | Life Cycle Impact Assessme<br>predict impact on category e                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              |                                                                                                                                             |  |  |  |  |  |
| EPD Program Operator           | LCA and EF                                                                                                                                                                                                                 | PD Producer Declarati                                                                                                                                                                                                                                                                        | on Owner                                                                                                                                    |  |  |  |  |  |
|                                | risbane Čity, PO Box 123<br>NSW 2515 A<br>Phone: +61<br>http://www.e<br>Dal<br>eenTag<br>ational<br>pduct certification                                                                                                    | Thirroul22 NorfollAustraliaNSW 254(0)7 5545 0998Phone: +6                                                                                                                                                                                                                                    | n Pty Ltd<br>k Ave, South Nowra<br>1 Australia<br>61 (0)2 4423 1989<br>ww.stormtech.com.au                                                  |  |  |  |  |  |
| PCR<br>EPD Owner               | Standard EN 15804+A2 201<br>Sub-PCR PDP:2023 Plumbin<br>This EPD is the property of t                                                                                                                                      | ng and Drainage Piping also                                                                                                                                                                                                                                                                  | applies [3].                                                                                                                                |  |  |  |  |  |
|                                | ionstration of Internal and E                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                              | abled above.                                                                                                                                |  |  |  |  |  |
| orgined and Dated Dem          | A chun Gones L                                                                                                                                                                                                             | ife Cycle Assessment (LCA<br>lones, The Evah Institute                                                                                                                                                                                                                                       | .) developed by Delwyn                                                                                                                      |  |  |  |  |  |
| Internal                       |                                                                                                                                                                                                                            | CA peer reviewed by<br>Ecquate Pty Ltd                                                                                                                                                                                                                                                       | Dr Sharmina Begum,                                                                                                                          |  |  |  |  |  |
|                                | E E                                                                                                                                                                                                                        | EPD Platform Operator rev<br>Bortsie-Aryee, Global Green<br>td                                                                                                                                                                                                                               |                                                                                                                                             |  |  |  |  |  |
| External Verifier<br>Statement | I, the undersigned, verifier,<br>relevant deviations by the EI<br>2012+A2:2019 and ECO PI<br>Company-specific, upstream<br>features report files held at<br>This verification applied Glo<br>checklists and this EPD state | hereby confirm my examin<br>DP owner, LCA report or PC<br>latform agreed interpretation<br>and downstream data in th<br>The Evah Institute were pl<br>bal GreenTag International                                                                                                             | Rs based on EN 15804<br>ns by CEN TR 16970.<br>e LCA & environmental<br>ausible and consistent.<br>adopted ECO Platform<br>programme rules. |  |  |  |  |  |
|                                | 05/12/2024                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                              | 1 9                                                                                                                                         |  |  |  |  |  |





## **Program Description**

| EPD Scope                                                                                                 | Tł           | The scope is cradle to grave A1 to C4 + D as defined by ISO14025. <sup>[1]</sup>                                                                                   |              |              |                   |              |              |              |              |              |            |              |          |           |               |              |              |              |              |
|-----------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|----------|-----------|---------------|--------------|--------------|--------------|--------------|
| System<br>boundary                                                                                        |              | The system boundary with nature includes material and energy acquisition, processing, manufacture, transport, installation, use plus waste arising to end of life. |              |              |                   |              |              |              |              |              |            |              |          |           |               |              |              |              |              |
| Stages included<br>Stages excluded                                                                        | St           | All known operations and stages in modules A1 to D3 are included.<br>Stages B5, B6 & B7 were excluded. All B1, B4, B5 & C3 flows and results were zero.            |              |              |                   |              |              |              |              |              |            |              |          |           |               |              |              |              |              |
| Information                                                                                               |              | Figure 1 depicts A1 to C4 modules inside this cradle to grave system boundary.                                                                                     |              |              |                   |              |              |              |              |              |            |              |          |           |               |              |              |              |              |
| Model                                                                                                     |              | Building Life Cycle Assessment                                                                                                                                     |              |              |                   |              | yond         |              |              |              |            |              |          |           |               |              |              |              |              |
| Information                                                                                               | ACI          | Actual Scenarios system                                                                                                                                            |              |              |                   |              |              |              |              |              |            |              |          |           |               |              |              |              |              |
| Stages                                                                                                    | Pi           | rodu                                                                                                                                                               | ıct          | Con          | Construct Use End |              |              | End-o        | of-Life      | Э            | В          | enef<br>load |          |           |               |              |              |              |              |
| Modules                                                                                                   | A1           | A2                                                                                                                                                                 | A3           | A4           | A5                | B1           | B2           | B3           | B4           | B5           | B6         | B7           | C1       | C2        | C3            | C4           | D1           | D2           | D3           |
| Phases                                                                                                    | $\checkmark$ |                                                                                                                                                                    | $\checkmark$ | $\checkmark$ | $\checkmark$      | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | М          | ND           |          |           | $\checkmark$  | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Operations<br>Cradle to Grave<br>Fate C <sub>2</sub> F &<br>beyond system<br>to Cradle (C <sub>2</sub> C) | Resources    | Transport                                                                                                                                                          | Manufacture  | Transport    | Construct         | Use          | Maintain     | Repair       | Replace      | Refurbish    | Energy use | Water use    | Demolish | Transport | Process Waste | Disposal     | Reuse        | Recovery     | Recycling    |

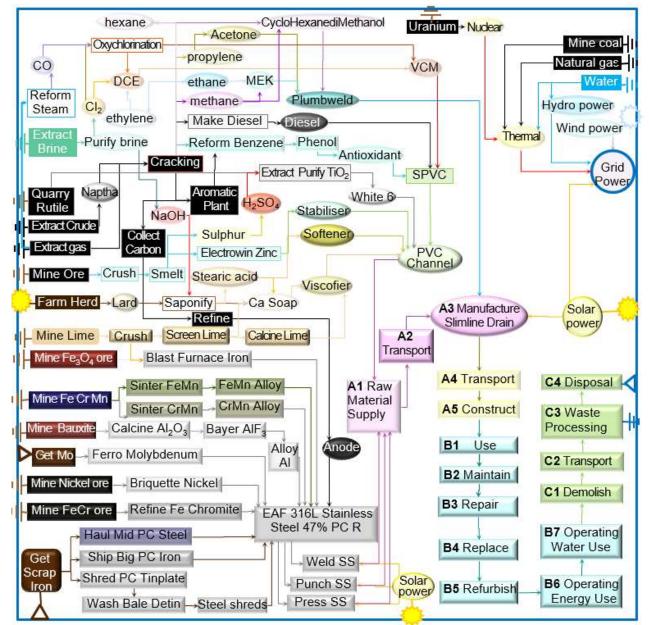
## Figure 1 Modules A to C in the Cradle to Grave System Boundary and Beyond

| Data Sources              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary Data              | Data is from primary sources 2018 to 2023 including manufacturer and supplier standards, logistics, technology, market share and management system in accordance with EN ISO 14044:2006, 4.3.2. All are physically allocated not economically allocated.                                                                                                                                                                                                                               |
| A1-A3 Stage<br>inclusions | Operations include all known raw material acquisition, refining and processing plus scrap<br>or material reuse from prior systems; electricity generated from all sources with extraction,<br>refining & transport plus secondary fuel energy and recovery processes. Also, transport to<br>factory gate; manufacture of inputs, ancillary material, product, packaging, maintenance,<br>replacement plus flows leaving at end-of-waste boundary and fate of all flows at end of life. |
| Variability               | Significant differences of average LCIA results are declared.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chemicals of<br>Concern   | Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".                                                                                                                                                                                                                                                                                                                                                    |

## LCA Data Quality

Data quality parameters are tabled below. Data was <10 years, cut-off & quality is ISO14025.<sup>[compliant.1]</sup>

| Background  | Data Quality | Parameters and Uncertainty (U)                        |               |            |            |  |  |  |
|-------------|--------------|-------------------------------------------------------|---------------|------------|------------|--|--|--|
| Correlation | Metric og    | U ±0.01                                               | U ±0.05       | U ±0.10    | U ±0.20    |  |  |  |
| Reliability | Reporting    | Site Audit                                            | Expert verify | Region     | Sector     |  |  |  |
|             | Sample       | >66% trend                                            | >25% trend    | >10% batch | >5% batch  |  |  |  |
| Completion  | Including    | >50%                                                  | >25%          | >10%       | >5%        |  |  |  |
|             | Cut-off      | 0.01%w/w                                              | 0.05%w/w      | 0.1%w/w    | 0.5%w/w    |  |  |  |
| Temporal    | Data Age     | <3 years                                              | ≤5 years      | <7.5 years | <10 years  |  |  |  |
|             | Duration     | >3 years                                              | <3 years      | <2 years   | 1 year     |  |  |  |
| Technology  | Typology     | Actual                                                | Comparable    | In Class   | Convention |  |  |  |
| Geography   | Focus        | Process                                               | Line          | Plant      | Corporate  |  |  |  |
|             | Range        | Continent                                             | Nation        | Plant      | Line       |  |  |  |
|             | Jurisdiction | Representation is Global, Australasia and Pacific Rim |               |            |            |  |  |  |




## System Scope and Boundaries

Figure 2 shows included processes in a cradle to grave system boundary to end of life fates reuse, recycling, or landfill grave.

Stages A1 to 3 model actual operations to acquire, refine, transport, fabricate, coat, use, clean, repair, reuse and dispose of metal, masonry, ceramic, timber, glass, plastic and composites. Stage A4 to C4 are modelled on typical scenarios to forecast operations including those of:

- Mining, extracting and refining resources to make commodities and packaging;
- Acquiring, cultivating, harvesting, extracting, refining produce and biomass;
- Fuel production to supply power and process energy and freight;
- Chemicals use in processing resources, intermediates and ancillaries;
- Process energy, fuel and freight of resources, intermediates and ancillaries;
- Use, cleaning, recoating, repair, recycling, re-use and landfill, as well as
- Infrastructure process energy transformed and material wear loss e.g. tyres.



**Figure 2. Product Process Flow Chart** 



#### **Details of Manufacturer**

Since 1989 Stormtech, an Australian designed and manufactured solutions, has provides innovative, patented designs of architectural grates and drains. Their products are easy to install and maintain. Designed to last, they are made from highest quality materials with high workmanship and durability quality standards.

The range of drains and grate designs suit both residential and commercial applications. The declared products are used in bathrooms, showers, landscape and pools. These are available in a range of coloured finishes, from deep to luminous metallic coatings. Stormtech made-to-length products are a complete finished stainless steel drainage unit ready for installation with custom waste outlet position. The Company proudly builds on its unrivalled environmental reputation as a manufacturer with Level-A Green Tag Certification.

#### **Product Information**

This section provides data required to calculate assessment results factoring different mass and periods.

| Range Names         | Slimline 'i' &' G' Series Drainage Systems                                     |
|---------------------|--------------------------------------------------------------------------------|
| Brand Name & Code   | Slimline 'i' All Stainless Steel Drain and Slimline Composite 'G' Series Drain |
| Factory warranty    | Fit for purpose use, 7 to 10 years.                                            |
| Manufacturer        | Stormtech Pty Ltd                                                              |
| Factory address     | 22 Norfolk Ave, South Nowra, NSW 2541 Australia                                |
| Site representation | Australasia                                                                    |
| Time                | Made and sold in 2024 for single use                                           |
| Application         | All Building and Curtilage Water Drainage Systems                              |
| Function            | Internal and External Drainage of Water                                        |
| Lifetime            | 60 years Reference Service Life (RSL) as in ISO 15686. <sup>[5,6]</sup>        |
| Declared unit       | Declared product of tabled kg/m length on exterior and interior buildings      |
| Functional unit     | 60 years use of declared product/kg cradle to grave and beyond                 |

## Whole of life Performance

This section provides qualitative information on whole of life performance.

| Effluent            | LCI results and ESCAP raised no red light concerns in emissions to water.1 |
|---------------------|----------------------------------------------------------------------------|
| Waste               | Cradle to grave waste to landfill from operations was non-hazardous.       |
| Standard Reference  | https://www.stormtech.com.au                                               |
| Practices Reference | https://www.stormtech.com.au                                               |
| Ecological Health   | No potential in-use impacts on environment or health are known.            |

## Whole of life Health Safety & Environment Performance This section provides qualitative information on Health Safety & Environment whole of life performance.

| Health Safety & Environment | Apart from compliance to occupational and workplace health safety and<br>environmental laws no additional personal protection is considered essential for<br>manufacture, use or reuse.                                                                                                                     |  |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Health Protection           | The product does not contain levels of carcinogenic, toxic or hazardous substances that warrant ecological or human health concern cradle to grave. It passed the Eco specifier Cautionary Assessment Process (ESCAP) and no issues or red-light concerns existed for product human or ecological toxicity. |  |  |  |
| Environmental<br>Protection | Continuous improvement under the maker's uncertified management system avoids toxics, waste and pollution plus reduce their material and energy use.                                                                                                                                                        |  |  |  |

<sup>1</sup> According with national standards in ANZECC Guideline For Fresh & Marine Water Quality (2000)



### **Product Components**

This section summarises factory components, functions, source nation and % mass share.

## Base Material Origin and Detail

This section lists Stormtech key components & packaging by function, type, sources & % mass share.

| Product        | Slimline 'i' Series Drain             |                             | Slimline 'G' Series Drain       |                   |             |  |
|----------------|---------------------------------------|-----------------------------|---------------------------------|-------------------|-------------|--|
| Function       | Component                             | Amount                      | Compo                           | onent             | Amount      |  |
| Grate          |                                       | >51 <52 316 Stainless Steel |                                 | ainless Steel     | >81 <82     |  |
| Channel        |                                       | >39 <40                     | >39 <40 Unplasticised Polyvinyl | ticised Polyvinyl | >17 <18     |  |
| Stop ends      | 316 Stainless Steel<br>ex Pacific Rim | >1.0<2.0                    |                                 | e (uPVC) ex       | >5.5 <6.0   |  |
| Spigot         |                                       | >1.0<2.0                    | Pacific I                       | Rim               | >0.2<0.3    |  |
| Joiners        |                                       | >5.5 <6.0                   |                                 |                   | 0           |  |
| Packaging      | Component                             |                             | So                              | ource             | Amount      |  |
| Pallet & Crate | Wood                                  | bod                         |                                 | ıstralia          | >2.0 <3.0   |  |
| Wrapping       | Linear Low Density Polyethylene       |                             | Glo                             | obal              | >0.10<0.20  |  |
| tape           | Polyester                             |                             | Au                              | ıstralia          | >0.01 <0.02 |  |

#### **Product Functional & Technical Performance Information**

This section provides manufacturer specifications and additional information.

| Stainless Steel |       |                    |            |             |       |                      |            |
|-----------------|-------|--------------------|------------|-------------|-------|----------------------|------------|
| Width*Depth     | Cover | Width*Depth        | Cover      | Width*Depth | Cover | Width*Depth          | Cover      |
| 65*25mm         | kg/m  | 65*25mm            | kg/m       | 65*40mm     | kg/m  | 100*20               | kg/m       |
|                 |       | 65ARi25            | 3.4        | 65ARi40     | 4.0   | 100ARi20             | 3.7        |
| 65MNDi25        | 2.3   |                    |            |             |       | 100MNDi20            | 2.9        |
| 65MNDip25       | 2.3   |                    |            |             |       | 100MNDip20           | 2.9        |
| 65PHi25         | 2.4   |                    |            | 65PHi40     | 2.9   |                      |            |
| 65PSi25         | 2.4   |                    |            | 65PSi40     | 3.1   | 100PSi20             | 3.1        |
|                 |       |                    |            | 65Tii40     | 2.8   |                      |            |
|                 |       | 65TRi25            | 3.4        | 65TRi40     | 4.3   | 100TRi20             | 3.7        |
|                 |       | 65TRTii25          | 2.6        |             |       |                      |            |
| Composite       |       |                    |            |             |       |                      |            |
| 38*40mm         | kg/m  | 65*25mm            | kg/m       | 65*40       | kg/m  | 100*20               | kg/m       |
|                 |       | 65ARG25            | 2.7        | 65ARG40     | 3.3   | 100ARG20             | 3.2        |
|                 |       | 65MNDG25           | 1.7        |             |       | 100MNDG20            | 2.3        |
|                 |       | 65MNDGP25          | 1.7        |             |       | 100MNDGP20           | 2.3        |
|                 |       | 65PASG25           | 1.8        | 65PASG40    | 2.2   | 100PASG20            | 2.5        |
| 38PHG40         | 1.7   | 65PHG25            | 1.7        | 65PHG40     | 2.2   |                      |            |
|                 |       | 65PPSG25           | 1.8        | 65PPSG40    | 2.2   | 100PPSG20            | 2.5        |
| 38PSG40         | 1.8   | 65PSG25            | 1.8        | 65PSG40     | 2.2   | 100PSG20             | 2.5        |
|                 |       |                    |            |             |       |                      |            |
|                 |       |                    |            |             |       |                      |            |
|                 |       | 65TiG25            | 1.9        |             |       | 100TiG20             | 2.2        |
|                 |       | 65TiG25<br>65TRG25 | 1.9<br>2.7 | 65TRG40     | 3.6   | 100TiG20<br>100TRG20 | 2.2<br>3.2 |

## **Scenarios Descriptions**

This section defines modelling stages scenarios A4 to D3 beyond actual operations in module A1 to A3.

| Module                                           | Type specified   | Amount   | Type specified        | Amount         |  |  |
|--------------------------------------------------|------------------|----------|-----------------------|----------------|--|--|
| Construction Modules                             |                  |          |                       |                |  |  |
|                                                  | Sea Shipping     | 13,000   | 85% Capacity          | Full back load |  |  |
| A4 Transport<br>factory to depot<br>then to site | Interstate Rail  | 1,300 km | 85% Capacity          | Full back load |  |  |
|                                                  | 25t semi-trailer | 200 km   | 85% Capacity          | No back load   |  |  |
| A5 Install                                       | VOCs indoors     | 0%       | Packaging & Waste     | 0%             |  |  |
| Building Modules                                 |                  |          |                       |                |  |  |
| B1 Use                                           | VOCs             | 0%       | No other flows        | 0%             |  |  |
| B2 Maintain                                      | fit for purpose  | 100%     | fit for purpose       | 0%             |  |  |
| B3 Repair                                        | fit for purpose  | 95%      | Repair damaged        | 5%             |  |  |
| Вэтеран                                          | in for purpose   |          | Repaint 8 yearly      | 100%           |  |  |
| B4 Replace                                       | fit for purpose  | 100%     | No other flows        | 0%             |  |  |
| B5 Refurbish                                     | fit for purpose  | 100%     | fit for purpose       | 100%           |  |  |
| B6 Energy use                                    | off grid         | 100%     | Solar and wind energy | 100%           |  |  |
| B7 Water use                                     | off grid         | 100%     | Rain and dew          | 100%           |  |  |
| End of Life Modules                              |                  |          |                       |                |  |  |
| C1 Demolish                                      | fit for purpose  | 100%     | No other flows        | 0%             |  |  |
| C2 Transport                                     | fit for purpose  | 100%     | No other flows        | 0%             |  |  |
| C4 Disposal                                      | fit for purpose  | 100%     | No other flows        | 0%             |  |  |
| Beyond System Bounda                             | ary Modules      |          |                       |                |  |  |
| D1 Reuse                                         | fit for purpose  | 75%      | No other flows        | 0%             |  |  |
| D2 Recover                                       | fit for purpose  | 22.5%    | No other flows        | 0%             |  |  |
| D3 Recycle                                       | fit for purpose  | 2.5%     | No other flows        | 0%             |  |  |



#### Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

| Global<br>warming<br>forcing Climate<br>Change                     | Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ". |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ozone layer<br>depletion                                           | Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the " <b>ozone hole</b> " reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.                                                                                                         |
| Acidification                                                      | Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow worldwide.                                                                                                                                                                                                                                                      |
| Eutrophication<br>of terrestrial,<br>freshwater and<br>marine life | Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH <sub>4</sub> ) and phosphorus (P, PO <sub>4</sub> <sup>3-</sup> ) in rain run-off over-fertilised land catchments.                                                                                                                                                                                                                                                                                    |
| Photochemical ozone creation                                       | Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.                                                                                                                                                                                                                               |
| Depletion of<br>minerals,<br>metals & water                        | Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.                                                                                                                                                                                                                                                                                                       |
| Depletion of<br>fossil fuel<br>reserves                            | Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.                                                                                                                                                                                                                            |



## Global GreenTag<sup>Cert™</sup> EPD Program Environmental Product Declaration Compliant to EN15804+A2 2019 Slimline Drainage Systems

### Inventory and Damage Impact Result Categories, Units and References to Methods

This section summarises impact and inventory result units with descriptions and references to methods.

| Impact & Inventory Results/Functional U | Init             |                       | •                                  |
|-----------------------------------------|------------------|-----------------------|------------------------------------|
| Result                                  |                  | Units                 | Description of Methods             |
| Climate Change biogenic                 | GWP BIO          | kg CO <sub>2eq</sub>  | GWP sequestered from air [4]       |
| Climate Change Iuluc                    | GWP LULUC        | kg CO <sub>2eq</sub>  | GWP land use & change (luluc) [4]  |
| Climate Change fossil                   | GWP FF           | kg CO <sub>2eq</sub>  | GWP fossil fuels [4]               |
| Climate Change total                    | GWP TOTAL        | kg CO <sub>2eq</sub>  | Global Warming Potential [4]       |
| Stratospheric Ozone Depletion           | ODP              | kg CFC <sub>11e</sub> | Stratospheric Ozone Loss [5]       |
| Photochemical Ozone Creation            | POCP             | kg NVOC               | e Summer Smog [6]                  |
| Acidification Potential                 | AP               | mol H⁺ <sub>eq</sub>  | Accumulated Exceedance [7]         |
| Eutrophication Freshwater               | EPFRESH          | kg P <sub>eq</sub>    | Excess freshwater nutrients [8]    |
| Eutrophication Marine                   | <b>EP</b> MARINE | kg N <sub>eq</sub>    | Excess marine nutrients [9]        |
| Eutrophication Terrestrial              | EPLAND           | mol N <sub>eq</sub>   | Excess nutrients to land [8]       |
| Mineral and Metal Depletion             | ADP MIN          | MJ <sub>ncv</sub>     | Abiotic Depletion fossil fuel [10] |
| Fossil Depletion                        | ADP FF           | kg Sb <sub>eq</sub>   | Abiotic Depletion minerals [9]     |
| Water Scarcity Depletion                | WDP              | $m^3$ WDP eq          | Water Deprivation Scarcity [11,12] |
| Input flows                             | Input            |                       |                                    |
| Net Fresh Water Use                     | FW               | m <sup>3</sup>        | Lake, river, well & town water     |
| Secondary Material                      | SM               | kg                    | Post-consumer recycled (PCR)       |
| Secondary Renewable Energy Use          | RSF              | MJ <sub>ncv</sub>     | PCR biomass burnt                  |
| Secondary Fossil Energy Use             | NRSF             | MJ ncv                | PCR fossil-fuels burnt             |
| Primary Renewable Feedstock Material    | PERM             | MJ <sub>ncv</sub>     | Biomass retained material          |
| Primary Renewable Energy Used           | PERE             | MJ ncv                | Biomass fuels burnt                |
| Total Primary Renewable Energy          | PERT             | MJ <sub>ncv</sub>     | Biomass burnt + retained           |
| Primary Fossil Feedstock Material       | PENRM            | MJ <sub>ncv</sub>     | Fossil feedstock retained          |
| Primary Fossil Energy Use               | PENRE            | MJ ncv                | fossil-fuel used or burnt          |
| Total Primary Fossil Energy Use         | PENRT            | MJ <sub>ncv</sub>     | Fossil feedstock & fuel use        |
| Output flows                            | Output           |                       |                                    |
| Hazardous Waste Disposed                | HWD              | kg                    | Reprocessed to contain risks       |
| Non-hazardous Waste Disposed            | NHWD             | kg                    | Municipal landfill facility waste  |
| Radioactive Waste Disposed              | RWD              | kg                    | Most ex nuclear power stations     |
| Components For Reuse                    | CRU              | kg                    | Product scrap for reuse as is      |
| Material For Recycling                  | MFR              | kg                    | Factory scrap to remanufacture     |
| Material For Energy Recovery            | MFE              | kg                    | Factory scrap use as fuel          |
| Exported Energy Electrical              | EEE              | MJ <sub>ncv</sub>     | Uncommon for building products     |
| Exported Energy Thermal                 | EET              | MJ <sub>ncv</sub>     | Uncommon for building products     |
|                                         |                  |                       |                                    |



#### Results Cradel to Grave A1 to C4 within the System Boundary

Table 1 lists A1 Resources, A2 Transport, A3 Manufacture, A4 Delivery, A5 Construct, B2 Maintain, B3 Repair, B4 Replace, B5 Refurb, C1 Demolish, C2 Transport and C4 Disposal results. Modules B1 Use, B4 Replace, B5 Refurbish, B6 Water use, B7 energy use or C3 Processing waste had no flows or result.

| Table 1 Impa | act & Input a | and Output | Results/kg | g Functional | Unit     |          |          |          |
|--------------|---------------|------------|------------|--------------|----------|----------|----------|----------|
| Burdens      | A1-3          | A4         | A5         | B2           | B3       | C1       | C2       | C4       |
| GWP BIO      | -4.5E-02      | -1.9E-04   | 2.3E-03    | -0.10        | -2.3E-03 | -7.0E-06 | -5.4E-07 | -1.9E-04 |
| GWP LULUC    | 5.6E-05       | 1.9E-04    | -4.7E-03   | 0            | -6.1E-05 | 7.0E-06  | 5.4E-07  | -1.2E-05 |
| GWP FF       | 5.7           | 1.9E-02    | 2.9E-01    | 0.71         | 0.29     | 1.9E-03  | 6.1E-03  | 1.5E-02  |
| GWP TOTAL    | 5.6           | 1.9E-02    | 2.8E-01    | 0.61         | 0.28     | 1.9E-03  | 6.1E-03  | 1.5E-02  |
| ODP          | 5.7E-09       | 1.7E-13    | 2.9E-10    | 3.1E-09      | 2.9E-10  | 7.0E-17  | 1.1E-13  | 5.0E-12  |
| POCP         | 2.0E-02       | 1.2E-04    | 1.0E-03    | 2.9E-03      | 1.0E-03  | 7.6E-06  | 6.0E-05  | 8.1E-05  |
| AP           | 6.7E-03       | 1.2E-05    | 3.4E-04    | 1.2E-03      | 3.4E-04  | 3.5E-06  | 5.0E-06  | 2.7E-05  |
| EPFRESH      | 7.1E-08       | 5.6E-10    | 5.5E-09    | 6.4E-07      | 5.5E-09  | 4.0E-13  | 3.1E-10  | 7.0E-10  |
| EP MARINE    | 1.2E-03       | 2.3E-06    | 6.2E-05    | 2.0E-04      | 6.2E-05  | 6.4E-07  | 9.4E-07  | 5.0E-06  |
| EPLAND       | 4.0E-03       | 7.7E-06    | 2.2E-04    | 1.4E-03      | 2.2E-04  | 4.1E-06  | 3.2E-06  | 2.4E-05  |
| ADP MIN      | 3.1           | 7.2E-06    | 0.15       | 3.1E-04      | 0.15     | 5.6E-12  | 4.0E-06  | 1.2E-02  |
| ADP FF       | 6.1E-04       | 2.2E-02    | 2.9E-05    | 0.52         | 2.9E-05  | 9.2E-04  | 7.5E-03  | 1.3E-06  |
| WDP          | 2.4E-03       | 2.9E-06    | 1.2E-04    | 9.7E-03      | 1.2E-04  | 8.5E-08  | 1.4E-06  | 9.3E-05  |
| Input        |               |            |            |              |          |          |          |          |
| FW           | 1.5E-02       | 1.8E-05    | 7.5E-04    | 6.0E-02      | 7.5E-04  | 5.20E-07 | 8.70E-06 | 5.7E-04  |
| SM           | 0.56          | 2.3E-06    | 2.5E-02    | 2.7E-03      | 2.5E-02  | 1.50E-05 | 1.70E-06 | 5.0E-02  |
| RSF          | 1.5           | 6.8E-06    | 7.3E-02    | 0.16         | 7.3E-02  | 3.0E-04  | 9.2E-05  | 1.6E-03  |
| NRSF         | -1.2          | 7.4E-04    | -5.3E-02   | 1.1          | -5.3E-02 | -6.6E-06 | 1.6E-03  | 2.1E-03  |
| PERM         | 1.1           | 3.0E-04    | 6.6E-02    | 0.56         | 6.6E-02  | 2.0E-03  | 2.0E-04  | 7.9E-03  |
| PERE         | -9.0E-02      | 2.4E-03    | 1.4E-02    | 1.8          | 1.4E-02  | 2.0E-03  | 1.8E-03  | 1.0E-02  |
| PERT         | -1.8E-02      | 2.7E-03    | -1.3E-03   | 4.2E-02      | -1.3E-03 | -3.8E-10 | -4.8E-04 | -1.1E-04 |
| PENRM        | 7.8           | 0.11       | 0.47       | 1.7          | 0.47     | 2.5E-04  | 3.7E-02  | 4.0E-02  |
| PENRE        | 42            | 0.19       | 2.14       | 7.6          | 2.14     | 1.6E-02  | 6.3E-02  | 0.14     |
| PENRT        | 50            | 0.3        | 2.61       | 9.3          | 2.61     | 1.7E-02  | 0.1      | 0.18     |
| Output       |               |            |            |              |          |          |          |          |
| HWD          | 0.18          | 3.7E-05    | 8.1E-03    | 9.9E-04      | 8.1E-03  | 7.2E-08  | 1.2E-05  | 1.4E-05  |
| NHWD         | 0.24          | 3.1E-04    | 1.1E-02    | 0.10         | 1.1E-02  | 4.3E-06  | 9.6E-05  | 0        |
| RWD          | 1.0E-16       | 1.0E-31    | 4.9E-18    | 2.5E-17      | 4.9E-18  | 5.0E-38  | 8.0E-32  | 7.3E-20  |
| CRU          | 3.5E-11       | 5.0E-06    | 1.0E-06    | 0            | 1.0E-06  | 0        | 0        | 2.3E-12  |
| MFR          | 3.5E-02       | 5.7E-06    | 1.9E-03    | 7.6E-02      | 1.9E-03  | 2.2E-05  | 4.0E-06  | 3.5E-04  |
| MER          | 4.1E-05       | 2.3E-07    | 7.9E-06    | 3.4E-05      | 7.9E-06  | 1.2E-13  | 1.5E-07  | 5.0E-08  |
| EEE          | 0             | 0          | 0          | 0            | 0        | 0        | 0        | 0        |
| EET          | 0             | 0          | 0          | 0            | 0        | 0        | 0        | 0        |

#### Table 1 Impact & Input and Output Results/kg Functional Unit



### **Results for Module D: Beyond System Boundaries**

Table 2 lists D1 reuse, D2 recovery and D3 recycling benefit and load results beyond the system boundary.

| Table 2 D1 to D3 Impact & Inventory Results/Functional Unit |          |          |          |  |
|-------------------------------------------------------------|----------|----------|----------|--|
| Result                                                      | D1       | D2       | D3       |  |
| Climate Change biogenic                                     | 3.4E-02  | -3.7E-02 | 1.2E-03  |  |
| Climate Change luluc                                        | -4.2E-05 | 3.7E-02  | -6.7E-06 |  |
| Climate Change fossil                                       | -4.3     | 2.5E-04  | -0.14    |  |
| Climate Change total                                        | -4.2     | 2.3E-04  | -0.14    |  |
| Stratospheric Ozone Depletion                               | -4.3E-09 | 5.7E-13  | -1.4E-10 |  |
| Photochemical Ozone Creation                                | -1.5E-02 | 9.9E-07  | -5.1E-04 |  |
| Acidification Potential                                     | -5.0E-03 | 4.3E-07  | -1.7E-04 |  |
| Eutrophication Freshwater                                   | -5.3E-08 | 1.2E-10  | -2.7E-09 |  |
| Eutrophication Marine                                       | -9.0E-04 | 7.6E-08  | -3.1E-05 |  |
| Eutrophication Terrestrial                                  | -3.0E-03 | 5.2E-07  | -1.1E-04 |  |
| Mineral and Metal Depletion                                 | -2.3     | 1.5E-04  | -7.7E-02 |  |
| Fossil Depletion                                            | -4.6E-04 | 5.7E-08  | -1.4E-05 |  |
| Water Scarcity Depletion                                    | -1.8E-03 | 1.8E-05  | -6.1E-05 |  |
| Input                                                       |          |          |          |  |
| Net Fresh Water Use                                         | -1.1E-02 | 1.1E-04  | -3.7E-04 |  |
| Secondary Material                                          | -0.42    | 0        | -1.3E-02 |  |
| Secondary Renewable Fuel                                    | 1.1      | 5.6E-05  | 3.6E-02  |  |
| Secondary Non-renewable Fuel                                | -0.9     | 1.9E-04  | -2.6E-02 |  |
| Primary Renewable Material                                  | 0.83     | 2.2E-04  | 3.3E-02  |  |
| Primary Energy Renewable Not Feedstock                      | -6.5E-02 | 4.1E-04  | 6.8E-03  |  |
| Primary Energy Renewable Total                              | -1.4E-02 | -7.7E-06 | -6.5E-04 |  |
| Primary Energy Non-renewable Material                       | -5.9     | 3.2E-04  | -0.23    |  |
| Primary Non-renewable Energy Not Feedstock                  | -32      | 2.4E-03  | -1.1     |  |
| Primary Energy Non-renewable Total                          | -38      | 2.7E-03  | -1.3     |  |
| Output                                                      |          |          |          |  |
| Hazardous Waste Disposed                                    | -0.13    | 1.9E-07  | -4.0E-03 |  |
| Non-hazardous Waste Disposed                                | -0.18    | 1.8E-05  | -5.7E-03 |  |
| Radioactive Waste Disposed                                  | -7.5E-17 | 4.6E-21  | -2.4E-18 |  |
| Components For Reuse                                        | -7.5E-06 | 1.0E-05  | -5.0E-07 |  |
| Material For Recycling                                      | -2.6E-02 | 1.5E-05  | -9.5E-04 |  |
| Material For Energy Recovery                                | -3.1E-05 | 6.2E-09  | -3.9E-06 |  |
| Exported Energy Electrical                                  | 0        | 0        | 0        |  |
| Exported Energy Thermal                                     | 0        | 0        | 0        |  |



#### Results Cradel to Grave A1 to C4 within the System Boundary

Table 1 lists A1 Resources, A2 Transport, A3 Manufacture, A4 Delivery, A5 Construct, B2 Maintain, B3 Repair, B4 Replace, B5 Refurb, C1 Demolish, C2 Transport and C4 Disposal results. Modules B1 Use, B4 Replace, B5 Refurbish, B6 Water use, B7 energy use or C3 Processing waste had no flows or result.

| Table 1 Impa |          |          |          |         |          | _        | _        |          |
|--------------|----------|----------|----------|---------|----------|----------|----------|----------|
| Burdens      | A1-3     | A4       | A5       | B2      | B3       | C1       | C2       | C4       |
| GWP BIO      | 4.9E-02  | -1.9E-04 | -2.5E-03 | -0.1    | -2.3E-03 | -7.0E-06 | -5.4E-07 | 0        |
| GWP LULUC    | -9.9E-02 | 1.9E-04  | 9.5E-05  | 0.0E+00 | -6.1E-05 | 7.0E-06  | 5.4E-07  | -2.0E-04 |
| GWP FF       | 5.7      | 1.9E-02  | 0.29     | 0.71    | 0.29     | 1.9E-03  | 6.1E-03  | 1.5E-02  |
| GWP TOTAL    | 5.7      | 1.9E-02  | 0.28     | 0.61    | 0.28     | 1.9E-03  | 6.1E-03  | 1.5E-02  |
| ODP          | 5.7E-09  | 1.7E-13  | 2.9E-10  | 3.1E-09 | 2.9E-10  | 7.0E-17  | 1.1E-13  | 5.0E-12  |
| POCP         | 2.0E-02  | 1.2E-04  | 1.0E-03  | 2.9E-03 | 1.0E-03  | 7.6E-06  | 6.0E-05  | 8.1E-05  |
| AP           | 6.9E-03  | 1.2E-05  | 3.4E-04  | 1.2E-03 | 3.4E-04  | 3.5E-06  | 5.0E-06  | 2.7E-05  |
| EPFRESH      | 1.5E-07  | 5.6E-10  | 5.5E-09  | 6.4E-07 | 5.5E-09  | 4.0E-13  | 3.1E-10  | 7.0E-10  |
| EP MARINE    | 1.3E-03  | 2.3E-06  | 6.2E-05  | 2.0E-04 | 6.2E-05  | 6.4E-07  | 9.4E-07  | 5.0E-06  |
| EPLAND       | 4.7E-03  | 7.7E-06  | 2.2E-04  | 1.4E-03 | 2.2E-04  | 4.1E-06  | 3.2E-06  | 2.4E-05  |
| ADP MIN      | 3.0      | 7.2E-06  | 0.15     | 3.1E-04 | 0.15     | 5.6E-12  | 4.0E-06  | 1.2E-02  |
| ADP FF       | 5.2E-04  | 2.2E-02  | 2.9E-05  | 0.52    | 2.9E-05  | 9.2E-04  | 7.5E-03  | 1.3E-06  |
| WDP          | 2.5E-03  | 2.9E-06  | 1.2E-04  | 9.7E-03 | 1.2E-04  | 8.5E-08  | 1.4E-06  | 9.3E-05  |
| Input        |          |          |          |         |          |          |          |          |
| FW           | 1.5E-02  | 1.8E-05  | 7.5E-04  | 6.0E-02 | 7.5E-04  | 5.2E-07  | 8.7E-06  | 5.7E-04  |
| SM           | 0.46     | 2.3E-06  | 2.5E-02  | 2.7E-03 | 2.5E-02  | 1.5E-05  | 1.7E-06  | 5.0E-02  |
| RSF          | 1.4      | 6.8E-06  | 7.0E-02  | 0.16    | 7.3E-02  | 3.0E-04  | 9.2E-05  | 1.6E-03  |
| NRSF         | -0.91    | 7.4E-04  | -4.5E-02 | 1.1     | -5.3E-02 | -6.6E-06 | 1.6E-03  | 2.1E-03  |
| PERM         | 1.5      | 3.0E-04  | 7.6E-02  | 0.56    | 6.6E-02  | 2.0E-03  | 2.0E-04  | 7.9E-03  |
| PERE         | 0.61     | 2.4E-03  | 3.1E-02  | 1.8     | 1.4E-02  | 2.0E-03  | 1.8E-03  | 1.0E-02  |
| PERT         | -3.2E-02 | 2.7E-03  | -1.6E-03 | 4.2E-02 | -1.3E-03 | -3.8E-10 | -4.8E-04 | -1.1E-04 |
| PENRM        | 11       | 0.11     | 0.54     | 1.7     | 0.47     | 2.5E-04  | 3.7E-02  | 4.0E-02  |
| PENRE        | 43       | 0.19     | 2.2      | 7.6     | 2.1      | 1.6E-02  | 6.3E-02  | 0.14     |
| PENRT        | 53       | 0.30     | 2.7      | 9.3     | 2.6      | 1.7E-02  | 1.0E-01  | 0.18     |
| Output       |          |          |          |         |          |          |          |          |
| HWD          | 0.15     | 3.7E-05  | 8.1E-03  | 9.9E-04 | 8.1E-03  | 7.2E-08  | 1.2E-05  | 1.4E-05  |
| NHWD         | 0.21     | 3.1E-04  | 1.1E-02  | 0.10    | 1.1E-02  | 4.3E-06  | 9.6E-05  | 0        |
| RWD          | 9.5E-17  | 1.0E-31  | 4.9E-18  | 2.5E-17 | 4.9E-18  | 5.0E-38  | 8.0E-32  | 7.3E-20  |
| CRU          | 3.4E-11  | 5.0E-06  | 1.0E-06  | 0       | 1.0E-06  | 0        | 0        | 2.3E-12  |
| MFR          | 4.0E-02  | 5.7E-06  | 1.9E-03  | 7.6E-02 | 1.9E-03  | 2.2E-05  | 4.0E-06  | 3.5E-04  |
| MER          | 2.7E-04  | 2.3E-07  | 7.9E-06  | 3.4E-05 | 7.9E-06  | 1.2E-13  | 1.5E-07  | 5.0E-08  |
| EEE          | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0        |
| EET          | 0        | 0        | 0        | 0       | 0        | 0        | 0        | 0        |
|              |          |          |          |         |          |          |          |          |

#### Table 1 Impact & Input and Output Results/kg Functional Unit



## **Results for Module D: Beyond System Boundaries**

Table 2 lists D1 reuse, D2 recovery and D3 recycling benefit and load results beyond the system boundary.

| Table 2 D1 to D3 Impact & Inventory Results/Functional Unit |          |          |          |  |
|-------------------------------------------------------------|----------|----------|----------|--|
| Result                                                      | D1       | D2       | D3       |  |
| Climate Change biogenic                                     | 3.7E-02  | -3.7E-02 | 1.2E-03  |  |
| Climate Change Iuluc                                        | -4.7E-04 | 3.7E-02  | -4.7E-05 |  |
| Climate Change fossil                                       | -4.3     | 2.5E-04  | -0.14    |  |
| Climate Change total                                        | -4.3     | 2.3E-04  | -0.14    |  |
| Stratospheric Ozone Depletion                               | -4.3E-09 | 5.7E-13  | -1.4E-10 |  |
| Photochemical Ozone Creation                                | -1.5E-02 | 9.9E-07  | -5.1E-04 |  |
| Acidification Potential                                     | -5.2E-03 | 4.3E-07  | -1.7E-04 |  |
| Eutrophication Freshwater                                   | -1.1E-07 | 1.2E-10  | -2.7E-09 |  |
| Eutrophication Marine                                       | -9.4E-04 | 7.6E-08  | -3.1E-05 |  |
| Eutrophication Terrestrial                                  | -3.5E-03 | 5.2E-07  | -1.1E-04 |  |
| Mineral and Metal Depletion                                 | -2.3     | 1.5E-04  | -7.7E-02 |  |
| Fossil Depletion                                            | -3.9E-04 | 5.7E-08  | -1.4E-05 |  |
| Water Scarcity Depletion                                    | -1.8E-03 | 1.8E-05  | -6.1E-05 |  |
| Input                                                       |          |          |          |  |
| Net Fresh Water Use                                         | -1.1E-02 | 1.1E-04  | -3.7E-04 |  |
| Secondary Material                                          | -0.35    | 0        | -1.3E-02 |  |
| Secondary Renewable Fuel                                    | -1.05    | 5.6E-05  | 3.6E-02  |  |
| Secondary Non-renewable Fuel                                | -0.68    | 1.9E-04  | -2.6E-02 |  |
| Primary Renewable Material                                  | -1.1     | 2.2E-04  | -3.3E-02 |  |
| Primary Energy Renewable Not Feedstock                      | 0.46     | 4.1E-04  | -6.8E-03 |  |
| Primary Energy Renewable Total                              | -2.4E-02 | -7.7E-06 | -6.5E-04 |  |
| Primary Energy Non-renewable Material                       | -8.0     | 3.2E-04  | -0.23    |  |
| Primary Non-renewable Energy Not Feedstock                  | -32      | 2.4E-03  | -1.1     |  |
| Primary Energy Non-renewable Total                          | -40      | 2.7E-03  | -1.3     |  |
| Output                                                      |          |          |          |  |
| Hazardous Waste Disposed                                    | -0.11    | 1.9E-07  | -4.0E-03 |  |
| Non-hazardous Waste Disposed                                | -0.16    | 1.8E-05  | -5.7E-03 |  |
| Radioactive Waste Disposed                                  | -7.1E-17 | 4.6E-21  | -2.4E-18 |  |
| Components For Reuse                                        | -7.5E-06 | 1.0E-05  | -5.0E-07 |  |
| Material For Recycling                                      | -3.0E-02 | 1.5E-05  | -9.5E-04 |  |
| Material For Energy Recovery                                | -2.0E-04 | 6.2E-09  | -3.9E-06 |  |
| Exported Energy Electrical                                  | 0        | 0        | 0        |  |
| Exported Energy Thermal                                     | 0        | 0        | 0        |  |



## Life Cycle Assessment Method

| LCA Author                           | The Evah Institute as described at <u>www.evah.institute</u>                                                                                                                                                                                               |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Study Period                         | Factory data was collected over the last 3 years Evah Associates                                                                                                                                                                                           |  |
| Study Goal                           | The attributional LCA was undertaken for ecolabelling                                                                                                                                                                                                      |  |
| LCA Method                           | Compliant with ISO 14040 and ISO 14044 Standards                                                                                                                                                                                                           |  |
| LCIA method                          | ReCiPe 2016, EcoIndicator 99 and CML as cited                                                                                                                                                                                                              |  |
| Scope                                | Cradle to Fate including all supply chain phases and stages                                                                                                                                                                                                |  |
| The system                           | System boundaries are in accordance with EN 15804+A2 modular design                                                                                                                                                                                        |  |
| Phases                               | The LCA covered all known flows in all known stages cradle to end of life fate.                                                                                                                                                                            |  |
| Assumptions                          | Use is to typical Australian Facility Management professional practice.                                                                                                                                                                                    |  |
| Scenarios                            | Use, cleaning, maintenance plus disposal and re-use were scenario-based using Facility Management Association denoted and published typical operations.                                                                                                    |  |
| System<br>Boundaries                 | The LCA covers all operations in the system boundary depicted in Figure 1.                                                                                                                                                                                 |  |
| Processes                            | All known processes are included from resource acquisition, water, fuel & energy use, power generation & distribution, freight, refining, intermediates, manufacture, scrap re-<br>use, packing and dispatch, installation, use, maintenance and landfill. |  |
|                                      | All significant waste and emission flows from all supply chain operations involved to make, pack and install the product are included.                                                                                                                     |  |
| Inclusions                           | Evah industry databases cover all known domestic and global scope 1 and 2 operations                                                                                                                                                                       |  |
| Exclusions                           | They exclude scope 3 burdens from capital facilities, equipment churn, noise and dehydration as well as incidental activities and employee commuting                                                                                                       |  |
|                                      | Statement of en15804 +A2:2019 used for the study and EPD                                                                                                                                                                                                   |  |
| General LCA<br>Report<br>Information | Other independent LCI/LCA data verification is documented                                                                                                                                                                                                  |  |
|                                      | EPD states compliance with added EEE construction products demands                                                                                                                                                                                         |  |
| Power mix                            | Power Guarantee of Origin was documented for EPD verification                                                                                                                                                                                              |  |



•

#### Primary Data Sources Representativeness and Quality

Primary data used for modelling the state of art of each operation includes all known process for:

- Technology sequences;
- Reliance on raw and recycled material; High and reduced process emissions; •
- Energy and water use; Landfill and effluent plus
- Freight and distribution systems.

Electricity supply models in active databases are updated annually. Primary data is sourced from clients, Annual Reports and their publications on corporate locations, logistics, technology use, market share, management systems, standards and commitment to improved environmental performance.

Information on operations is also sourced from client:

- Supply chain mills, their technical manuals, corporate annual reports and sector experts, and •
- Manufacturing specifications websites and factory site development license applications.

#### **Background data Sources Representativeness and Quality**

Background data is sourced from the IBISWorld, USGS Minerals, Franklin Associates, Plastics Europe, CML2, Simapro 9.5, Ecolnvent 3.9 and NREL USLCI model databases.

Background Power and fuel supply models in active databases are updated annually with data sourced from each power supplier and power station as well as the International Energy Agency.

Information on operations is also sourced from:

- Library, document, NPI and web searches, review papers, building manuals and
- Global Industry Association and Government reports on Best Available Technology (BAT). •

For benchmarking, comparison and integrity checks inventory data is developed to represent BAT, business as usual and worst practice options with operations covering industry sector supply and infrastructure in Australia and overseas.

Such technology, performance and license conditions were modelled and evaluated across mining, farming, forestry, freight, infrastructure and manufacturing and building industry sectors by Evah Institute Directors and Associates since 1995.

#### **Quality Assurance**

As each project is modelled and new data is available the databases are updated and audited by external Type 1 ecolabel certifiers.

The databases exist in top zones of commercial global inventory modelling and calculating engines and LCIA software including OpenLCA, Australian LCADesign™ as well as Simapro models as of 2014.

Quality control methods are applied to ensure:

- Coverage of place in time with all information<sup>2</sup> for each dataset noted, checked and updated; •
- Consistency to Evah guidelines<sup>3</sup> for all process technology, transport and energy demand;
- Completeness of modeling based on reports, literature and industry reviews;
- Plausibility in 2 way checks of LCI input and output flows of data checked for validity, plus .
- Mathematical correctness of all calculations in mass and energy balance cross checks.

<sup>&</sup>lt;sup>2</sup> Jones D G (2004) LCI Database for Commercial Building Report 2001-006-B-15 Icon.net, Australia

<sup>&</sup>lt;sup>3</sup> Evah Tools, Databases and Methodology Queensland, Australia at http://www.evah.com.au/tools.html



#### **Supply Chain Modelling Assumptions**

Australian building sector rules and Evah Institute assumptions applied are defined in Table b.

| Quality/DomainNational including Import and ExportProcess ModelTypical industry practice with currently most common or best (BAT) technologyResource flowsRegional data for resource mapping, fuels, energy, electricity and logisticsTemporalProject data was collated over the last 3 yearsGeographyDesignated client, site, regional, national, Pacific Rim then European jurisdictionRepresentationDesignated client, their suppliers and energy supply chains back to the cradleConsistencyModel all operations by known given operations with closest proximityTechnologyPacific Rim Industry Supply Chain Technology typical of the last 3 yearsFunctional UnitTypical product usage with cleaning& disposal/m² over the set year service lifeSystem ControlPrimary SourcesClients and suppliers' mills, publications, websites, specifications & manualsOther SourcesIEA, GGT, Boustead, Simapro, IBIS, EcolnventData mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global GreenTag ResearchersData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pEOple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundarySystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem                                                                                                                                        | Table b Scope Boundaries Assumptions and Metadata |                                                                                                        |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| Resource flows         Regional data for resource mapping, fuels, energy, electricity and logistics           Temporal         Project data was collated over the last 3 years           Geography         Designated client, site, regional, national, Pacific Rim then European jurisdiction           Representation         Designated client, site, regional, national, Pacific Rim then European jurisdiction           Representation         Designated client, site, regional, national, Pacific Rim the European jurisdiction           Representation         Designated client, site, regional, national, Pacific Rim the Supplers' mills           Technology         Pacific Rim Industry Supply Chain Technology typical of the last 3 years           Functional         Typical product usage with cleaning& disposal/m² over the set year service life           System Control         Primary Sources           Clients and suppliers' mills, publications, websites, specifications & manuals           Other Sources         EleA, GGT, Boustead, Simapro, IBIS, Ecolnvent           Data mix         Power grid and renewable shares updated to latest IEA reports           Operational         Company data for process performance, product share, waste and emissions           Logistics         Local data is used for power, fuel mix, water supply, logistics share & capacity           New Data Entry         WiegLCA, Evah Institute; Global Green Tag Researchers           Data Publisher         The Evah Institute;                                                                                                                                         | Quality/Domain                                    | National including Import and Export                                                                   |  |  |  |  |
| TemporalProject data was collated over the last 3 yearsGeographyDesignated client, site, regional, national, Pacific Rim then European jurisdictionRepresentationDesignated client, their suppliers and energy supply chains back to the cradleConsistencyModel all operations by known given operations with closest proximityTechnologyPacific Rim Industry Supply Chain Technology typical of the last 3 yearsFunctional UnitTypical product usage with cleaning& disposal/m <sup>2</sup> over the set year service lifeSystem ControlPrimary SourcesClients and suppliers' mills, publications, websites, specifications & manualsOther SourcesIEA, GGT, Boustead, Simapro, IBIS, EcolnventData mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pE0ple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks\LinksLy industry stockpiles\Links_capital wear \Links_system loses and useDry te                                                                                                  | Process Model                                     | Typical industry practice with currently most common or best (BAT) technology                          |  |  |  |  |
| GeographyDesignated client, site, regional, national, Pacific Rim then European jurisdictionRepresentationDesignated client, their suppliers and energy supply chains back to the cradleConsistencyModel all operations by known given operations with closest proximityTechnologyPacific Rim Industry Supply Chain Technology typical of the last 3 yearsFunctional UnitTypical product usage with cleaning& disposal/m² over the set year service lifeSystem ControlPrimary SourcesClients and suppliers' mills, publications, websites, specifications & manualsOther SourcesIEA, GGT, Boustead, Simapro, IBIS, EcolnventData mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Gobal Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Metz: IBISData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pE0ple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocksá, industry stockpilesá, capital wear A, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% fuan EU; >20% fuel efficient larger vehicles, load & distanceIndustrial                                                                                                                          | Resource flows                                    | Regional data for resource mapping, fuels, energy, electricity and logistics                           |  |  |  |  |
| Representation         Designated client, their suppliers and energy supply chains back to the cradle           Consistency         Model all operations by known given operations with closest proximity           Technology         Pacific Rim Industry Supply Chain Technology typical of the last 3 years           Functional Unit         Typical product usage with cleaning& disposal/m <sup>2</sup> over the set year service life           System Control         Primary Sources         Clients and suppliers' mills, publications, websites, specifications & manuals           Other Sources         LEA, GGT, Boustead, Simapro, IBIS, Ecolnvent         Power grid and renewable shares updated to latest IEA reports           Operational         Company data for process performance, product share, waste and emissions         Local data is used for power, fuel mix, water supply, logistics share & capacity           New Data Entry         VliegLCA, Evah Institute; Gotbal Green Tag Researchers         Data Generator           Data Publisher         The Evah Institute to Global GreenTag and designated client only           Contributors         All pE0ple's contributors cited in Evah & Global GreenTag records or websites           Data Flow & Mix         System Boundary         Earth's cradle of all resource & emission flows to end of use, fitout or build life           System flows         All known from and to air, land, water and community sources & sinks         Capital inclusions           Arid Practice         Dry technology adopted; Wa                                                                                    | Temporal                                          | Project data was collated over the last 3 years                                                        |  |  |  |  |
| ConsistencyModel all operations by known given operations with closest proximityTechnologyPacific Rim Industry Supply Chain Technology typical of the last 3 yearsFunctional UnitTypical product usage with cleaning& disposal/m² over the set year service lifeSystem ControlPrimary SourcesPrimary SourcesClients and suppliers' mills, publications, websites, specifications & manualsOther SourcesIEA, GGT, Boustead, Simapro, IBIS, EcoInventData mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pEOple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundarySystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocksA, industry stockpilesA, capital wear A, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is bas                                                                                                                               | Geography                                         | Designated client, site, regional, national, Pacific Rim then European jurisdiction                    |  |  |  |  |
| Technology         Pacific Rim Industry Supply Chain Technology typical of the last 3 years           Functional Unit         Typical product usage with cleaning& disposal/m² over the set year service life           System Control         Primary Sources         Clients and suppliers' mills, publications, websites, specifications & manuals           Other Sources         IEA, GGT, Boustead, Simapro, IBIS, Ecolnvent         Power grid and renewable shares updated to latest IEA reports           Operational         Company data for process performance, product share, waste and emissions         Local data is used for power, fuel mix, water supply, logistics share & capacity           New Data Entry         VliegLCA, Evah Institute; Global Green Tag Researchers         Data Generator         Manufacturers, Evah Institute; GGT]; Meta: IBIS           Data Publisher         The Evah Institute to Global GreenTag and designated client only         Contributors         All pEOple's contributors cited in Evah & Global GreenTag records or websites           Data Flow & Mix         System Boundary         Earth's cradle of all resource & emission flows to end of use, fitout or build life           System flows         All known from and to air, land, water and community sources & sinks         Capital inclusions         Natural stocks∆, industry stockpiles∆, capital wear ∆, system losses and use           Arid Practice         Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Transportation         Distance >20% than EU; >20% fuel efficient large                                            | Representation                                    | Designated client, their suppliers and energy supply chains back to the cradle                         |  |  |  |  |
| Functional Unit       Typical product usage with cleaning& disposal/m² over the set year service life         System Control       Primary Sources         Clients and suppliers' mills, publications, websites, specifications & manuals         Other Sources       IEA, GGT, Boustead, Simapro, IBIS, EcoInvent         Data mix       Power grid and renewable shares updated to latest IEA reports         Operational       Company data for process performance, product share, waste and emissions         Logistics       Local data is used for power, fuel mix, water supply, logistics share & capacity         New Data Entry       VilegLCA, Evah Institute; Global Green Tag Researchers         Data Generator       Manufacturers, Evah Institute; GGTI; Meta: IBIS         Data Publisher       The Evah Institute to Global GreenTag and designated client only         Contributors       All pEOple's contributors cited in Evah & Global GreenTag records or websites         Data Flow & Mix       System Boundary         System flows       All known from and to air, land, water and community sources & sinks         Capital inclusions       Natural stocks∆, industry stockpiles∆, capital wear ∆, system losses and use         Arid Practice       Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance       Industrial         Company or industry sector data for manufacturi                                                                                                                                                                          | Consistency                                       | Model all operations by known given operations with closest proximity                                  |  |  |  |  |
| System Control         Primary Sources       Clients and suppliers' mills, publications, websites, specifications & manuals         Other Sources       IEA, GGT, Boustead, Simapro, IBIS, EcoInvent         Data mix       Power grid and renewable shares updated to latest IEA reports         Operational       Company data for process performance, product share, waste and emissions         Logistics       Local data is used for power, fuel mix, water supply, logistics share & capacity         New Data Entry       VliegLCA, Evah Institute; Global Green Tag Researchers         Data Generator       Manufacturers, Evah Institute; GGTI; Meta: IBIS         Data Publisher       The Evah Institute to Global GreenTag and designated client only         Contributors       All pEOple's contributors cited in Evah & Global GreenTag records or websites         Data Flow & Mix       System Boundary         System flows       All known from and to air, land, water and community sources & sinks         Capital inclusions       Natural stocks∆, industry stockpiles∆, capital wear ∆, system losses and use         Arid Practice       Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance       Company or industry sector data for manufacturing and minerals involved         Mining       All raw material extraction is based on Australian or Pacific Rim technology       Mix is from neare                                                                                                                                                         | Technology                                        | Pacific Rim Industry Supply Chain Technology typical of the last 3 years                               |  |  |  |  |
| Primary Sources         Clients and suppliers' mills, publications, websites, specifications & manuals           Other Sources         IEA, GGT, Boustead, Simapro, IBIS, Ecolnvent           Data mix         Power grid and renewable shares updated to latest IEA reports           Operational         Company data for process performance, product share, waste and emissions           Logistics         Local data is used for power, fuel mix, water supply, logistics share & capacity           New Data Entry         VliegLCA, Evah Institute; Global Green Tag Researchers           Data Generator         Manufacturers, Evah Institute; GGTI; Meta: IBIS           Data Publisher         The Evah Institute to Global GreenTag and designated client only           Contributors         All pEOple's contributors cited in Evah & Global GreenTag records or websites           Data Flow & Mix         System Boundary         Earth's cradle of all resource & emission flows to end of use, fitout or build life           System flows         All known from and to air, land, water and community sources & sinks         Capital inclusions           Arid Practice         Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Transportation           Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance         Industrial         Company or industry sector data for manufacturing and minerals involved           Mining         All raw material extraction is based on Australian or Pacif                                                                                                                | Functional Unit                                   | Typical product usage with cleaning& disposal/m <sup>2</sup> over the set year service life            |  |  |  |  |
| Other SourcesIEA, GGT, Boustead, Simapro, IBIS, EcolnventData mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Meta: IBISData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pEOple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundarySystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationImmodered fuel to graveAccuracy10 <sup>th</sup> generation study is ± 5 to 10% uncertain due to some background data <td>System Control</td> <td></td>                                                                             | System Control                                    |                                                                                                        |  |  |  |  |
| Data mixPower grid and renewable shares updated to latest IEA reportsOperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Meta: IBISData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pE0ple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks industry stockpiles is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults                                                                                                                     | Primary Sources                                   | Clients and suppliers' mills, publications, websites, specifications & manuals                         |  |  |  |  |
| OperationalCompany data for process performance, product share, waste and emissionsLogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Meta: IBISData PublisherThe Evah Institute to Global Green Tag and designated client onlyContributorsAll pEOple's contributors cited in Evah & Global Green Tag records or websitesData Flow & MixSystem BoundarySystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fra                                                                                                    | Other Sources                                     | IEA, GGT, Boustead, Simapro, IBIS, Ecolnvent                                                           |  |  |  |  |
| LogisticsLocal data is used for power, fuel mix, water supply, logistics share & capacityNew Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Meta: IBISData PublisherThe Evah Institute to Global GreenTag and designated client onlyContributorsAll pEOple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocksΔ, industry stockpilesΔ, capital wear Δ, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAll significant operations are tracked and documented from the cradle to graveTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from &                                                                                           | Data mix                                          | Power grid and renewable shares updated to latest IEA reports                                          |  |  |  |  |
| New Data EntryVliegLCA, Evah Institute; Global Green Tag ResearchersData GeneratorManufacturers, Evah Institute; GGTI; Meta: IBISData PublisherThe Evah Institute to Global Green Tag and designated client onlyContributorsAll pE0ple's contributors cited in Evah & Global Green Tag records or websitesData Flow & MixSystem BoundarySystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocksΔ, industry stockpilesΔ, capital wear Δ, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practice <td>Operational</td> <td>Company data for process performance, product share, waste and emissions</td> | Operational                                       | Company data for process performance, product share, waste and emissions                               |  |  |  |  |
| Data Generator       Manufacturers, Evah Institute ; GGTI; Meta: IBIS         Data Publisher       The Evah Institute to Global GreenTag and designated client only         Contributors       All pE0ple's contributors cited in Evah & Global GreenTag records or websites         Data Flow & Mix       System Boundary         System Boundary       Earth's cradle of all resource & emission flows to end of use, fitout or build life         System flows       All known from and to air, land, water and community sources & sinks         Capital inclusions       Natural stocks∆, industry stockpiles∆, capital wear ∆, system losses and use         Arid Practice       Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Transportation       Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance         Industrial       Company or industry sector data for manufacturing and minerals involved         Mining       All raw material extraction is based on Australian or Pacific Rim technology         Imported fuel       Mix is from nearest sources is e.g. UAE, SE Asia, Canada or New Zealand         Finishes       Processing inputs with finishing burdens are factored in. If not, that is denoted         Validation       All significant operations are tracked and documented from the cradle to grave         Precision       Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond         Allocation       100% to co                                                                                                                                                          | Logistics                                         | Local data is used for power, fuel mix, water supply, logistics share & capacity                       |  |  |  |  |
| Data PublisherThe Evah Institute to Global GreenTag and designated client only<br>All pE0ple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build life<br>All known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAll significant operations are tracked and documented from the cradle to grave<br>Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                     | New Data Entry                                    | VliegLCA, Evah Institute; Global Green Tag Researchers                                                 |  |  |  |  |
| ContributorsAll pE0ple's contributors cited in Evah & Global GreenTag records or websitesData Flow & MixSystem BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10 <sup>th</sup> generation study is ± 5 to 10% uncertain due to some background dataAll completenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                 | Data Generator                                    | Manufacturers, Evah Institute ; GGTI; Meta: IBIS                                                       |  |  |  |  |
| Data Flow & Mix         System Boundary       Earth's cradle of all resource & emission flows to end of use, fitout or build life         System flows       All known from and to air, land, water and community sources & sinks         Capital inclusions       Natural stocks∆, industry stockpiles∆, capital wear ∆, system losses and use         Arid Practice       Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining         Transportation       Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance         Industrial       Company or industry sector data for manufacturing and minerals involved         Mining       All raw material extraction is based on Australian or Pacific Rim technology         Imported fuel       Mix is from nearest sources is e.g. UAE, SE Asia, Canada or New Zealand         Finishes       Processing inputs with finishing burdens are factored in. If not, that is denoted         Validation       All significant operations are tracked and documented from the cradle to grave         Precision       Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond         All cesource use from & emissions to community air land, water are included         Plausibility       Results are checked and benchmarked against BAT, BAU & worst practice         Sensitivity       Calculated U is reported & compared to libraries of Bath U RICE & Ecolnvert 3.9                                                                                                                                                                                                          | Data Publisher                                    | The Evah Institute to Global GreenTag and designated client only                                       |  |  |  |  |
| System BoundaryEarth's cradle of all resource & emission flows to end of use, fitout or build lifeSystem flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidation10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                 | Contributors                                      | All pE0ple's contributors cited in Evah & Global GreenTag records or websites                          |  |  |  |  |
| System flowsAll known from and to air, land, water and community sources & sinksCapital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10 <sup>th</sup> generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocationAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                 | Data Flow & Mix                                   |                                                                                                        |  |  |  |  |
| Capital inclusionsNatural stocks∆, industry stockpiles∆, capital wear ∆, system losses and useArid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10 <sup>th</sup> generation study is ± 5 to 10% uncertain due to some background dataAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                           | System Boundary                                   | Earth's cradle of all resource & emission flows to end of use, fitout or build life                    |  |  |  |  |
| Arid PracticeDry technology adopted; Water use is factored by 0.1 as for e.g. MiningTransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocationAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | System flows                                      | All known from and to air, land, water and community sources & sinks                                   |  |  |  |  |
| TransportationDistance >20% than EU; >20% fuel efficient larger vehicles, load & distanceIndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocationAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capital inclusions                                | Natural stocks $\Delta$ , industry stockpiles $\Delta$ , capital wear $\Delta$ , system losses and use |  |  |  |  |
| IndustrialCompany or industry sector data for manufacturing and minerals involvedMiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Arid Practice                                     | Dry technology adopted; Water use is factored by 0.1 as for e.g. Mining                                |  |  |  |  |
| MiningAll raw material extraction is based on Australian or Pacific Rim technologyImported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Transportation                                    | Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance                            |  |  |  |  |
| Imported fuelMix is from nearest sources is e.g. UAE, SE Asia, Canada or New ZealandFinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Industrial                                        | Company or industry sector data for manufacturing and minerals involved                                |  |  |  |  |
| FinishesProcessing inputs with finishing burdens are factored in. If not, that is denotedValidationAccuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mining                                            | All raw material extraction is based on Australian or Pacific Rim technology                           |  |  |  |  |
| Validation         Accuracy       10 <sup>th</sup> generation study is ± 5 to 10% uncertain due to some background data         Completeness       All significant operations are tracked and documented from the cradle to grave         Precision       Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond         Allocation       100% to co products on reaction stoichiometry by energetic or mass fraction         Burdens       All resource use from & emissions to community air land, water are included         Plausibility       Results are checked and benchmarked against BAT, BAU & worst practice         Sensitivity       Calculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Imported fuel                                     | Mix is from nearest sources is e.g. UAE, SE Asia, Canada or New Zealand                                |  |  |  |  |
| Accuracy10th generation study is ± 5 to 10% uncertain due to some background dataCompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finishes                                          | Processing inputs with finishing burdens are factored in. If not, that is denoted                      |  |  |  |  |
| CompletenessAll significant operations are tracked and documented from the cradle to gravePrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Validation                                        |                                                                                                        |  |  |  |  |
| PrecisionTracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyondAllocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Accuracy                                          | $10^{th}$ generation study is ± 5 to 10% uncertain due to some background data                         |  |  |  |  |
| Allocation100% to co products on reaction stoichiometry by energetic or mass fractionBurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Completeness                                      | All significant operations are tracked and documented from the cradle to grave                         |  |  |  |  |
| BurdensAll resource use from & emissions to community air land, water are includedPlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Precision                                         | Tracking of >90% flows applies a 90:10 rule sequentially to 99.9% and beyond                           |  |  |  |  |
| PlausibilityResults are checked and benchmarked against BAT, BAU & worst practiceSensitivityCalculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Allocation                                        | 100% to co products on reaction stoichiometry by energetic or mass fraction                            |  |  |  |  |
| Sensitivity Calculated U is reported & compared to libraries of Bath U RICE & Ecolnvent 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Burdens                                           | All resource use from & emissions to community air land, water are included                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Plausibility                                      | Results are checked and benchmarked against BAT, BAU & worst practice                                  |  |  |  |  |
| Validity Checks Are made versus Plastics Europe, Ecobilan, GaBi & or Industry LCA Literature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sensitivity                                       | Calculated U is reported & compared to libraries of Bath U RICE & EcoInvent 3.9                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Validity Checks                                   | Are made versus Plastics Europe, Ecobilan, GaBi & or Industry LCA Literature                           |  |  |  |  |



### Global GreenTag<sup>Cert™</sup> EPD Program Environmental Product Declaration Compliant to EN15804+A2 2019 Slimline Drainage Systems

#### References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations -Core rules for the product category of construction products.
- [2] Sub-PCR PDP:2023 Plumbing and Drainage Piping v1. https://www.globalgreentag.com/get/files/1259
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations -Principles and procedures.
- [4] ISO14044:2006 Environmental management Life cycle assessment (LCA) Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets: Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets: Service-life planning Part 8: Reference service life and estimation.
- [7] IPCC Global Warming Potential 100-year, (2013) IPCC Fifth Assessment Report Climate Change.
- [8] WMO, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. (2008) European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. (2006) Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416. DOI:10.1065/Ica2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of Life Cycle Assessment 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009).
- [13] ReCiPe (2008) A LCIA method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed.
- [14] CML–IA V4.1 LCA methodology (2012) CML University of Leiden, Netherlands.
- [15] Guinée et al. (2002) and van Oers et al.,(2002) CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [16] Boulay, A-M., et al. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. DOI 10.1007/s11367-017-1333-8.
- [17] Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, UN EP Life Cycle Initiative. DOI 10.13140/RG.2.1.2383.4485
- [18] Di Sacco, A., et al., Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery & livelihood benefits (2021) Global Change Biology 277. DOI 10.1111/gcb.15498
- [19] EN ISO 14024:2000, Environmental labels and declarations Type I environmental labelling -Principles and procedures.
- [20] EN ISO 14040:2006, Environmental management LCA Principles and framework (ISO14040:2006).
- [21] EN 15643-1:2010, Sustainability of construction works Sustainability assessment of buildings Part 1: General framework.
- [22] EN 15643-2, Sustainability of construction works Assessment of buildings Part 2: Framework for the assessment of environmental performance.
- [23] Intergovernmental Panel on Climate Change (2021) Assessment Report 6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/report/ar6/wg1/.
- [24] ISO 21930:2007 Sustainability in building construction Environmental declaration of building products.
- [25] SO 21931-1:2010, Sustainability in building construction Framework for methods of assessment of the environmental performance of construction works Part 1: Buildings.



Global GreenTag<sup>Cert™</sup> EPD Program Environmental Product Declaration Compliant to EN15804+A2 2019 Slimline Drainage Systems

Further and explanatory information is found at

http://www.globalgreentag.com/ or contact: certification1@globalgreentag.com



Global GreenTagCertTM EPD Program Environmental Product Declaration Compliant to ISO 14025

© Copyright of this EPD remains the property of Global GreenTag International Pty Ltd