

Fairview

Vitracore G2

18-20 Donald St, Lithgow, NSW 2790 Company Address:

22 November 2023 Issue Date:

22 November 2028 Valid to:

Document Version:

01 August 2024 **Revision Date:**

Environment Product Declaration Details

EPD Scope

EPD Type

Product Specific EPD

FAI:VG01:2023:EP

22 November 2023

22 November 2028

CEN standard EN 15804 serves as the core PCR

Compliant with EN 15804:2012+A2:2019

Independent external verification of the declaration and data, according to ISO 14025:2010

□Internal ⊠External

Third Party Verifier

Valid Until

Internal EPD Reviewed by

Angel Avadi, 4A Klima

Nana Bortsie-Aryee, Global GreenTag Pty Ltd

The EPD is property of declared manufacturer. Different program EPDs may not be comparable as e.g. Australian transport is often more than elsewhere. Comparability is further dependent on the product category rules used and the source of the data. EPDs of construction products may not be comparable if they do not comply with EN15804. Further explanatory information is found at globalgreentag.com or contact: epd@globalgreentag.com.

This Environmental Product Declaration (EPD) discloses potential environmental outcomes compliant with EN 15804:2012+A2 2019 for business to business communication and currency as per Section 7.1 Table 2.

EPD Program Operator	EPD Producer	Declaration Owner
Global GreenTag International	IKE Environmental	FVA Group Pty Ltd
Pty Ltd	Technology Co. Ltd.	(Fairview) 13
PO Box 311	PO Box 610000	
Level 38, 71 Eagle Street Brisbane City QLD 4000 Australia	No.139 Kehua Middle Road, Wuhou District	18-20 Donald St, Lithgow, NSW 2790, Australia
Phone: +61 1300 263 586	Phone: +86 13882129195	Phone:+61 1800 007 175
http://www.globalgreentag.co <u>m</u>	http://www.ike-global.com	http://www.fv.com.au
GREENTAG INTERNATIONAL® green product certification trust brands	IKE Integrated Knowledge for our Environment 亿科环境科技	FAIRVIEW

Product Information

Vitracore G2 **Product Name**

Deemed non-combustible bonded aluminium Description

panel, facade products for all types of buildings

CEN standard EN 15804 serves as the core PCR **PCR**

> The function unit is 1 m² of Vitracore G2 with an average weight of 4.2kg/m² from cradle to Gate

with options, modules A4-A5, C1-C4 and **Declared Unit/**

Functional Unit module D

20 years Manufacturer

Site

Representation &

Cut-off criteria & **Data quality**

Standards

warranty Dubai Industrial City, Dubai, UAE. Huashi Town, Jiangyin, Jiangus, China

Manufacturing Site Australasia

Geography Complies with EN 15804+A2:2019

> This product complies with ISO 14044: 2006 EM: LCA: Requirement & guideline for data review: LCI; LCIA, Interpretation results: Include

additional quality testing as required by PCR.

Page 3 of 24

Product
Specifications

Test	Result
AS 1530.1 – 1994 Combustibility Test for materials	Not deemed combustible
AS 229.1 Bending Report	Available on request
ASTM D1781-98(2012)	Available on request
AS1530.3 - Fire Test on Building Materials	Ignitability index: 0, Spread of Flame Index: 0, Heat Evolved Index: 0, Smoke Developed Index:1
AS4040.3 Cyclonic testing	Available on request
AAMA2605-17 Voluntary Specification, Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Aluminum Extrusions and Panels	Pass
AS/NZA 4284:2008 Testing of building facades clause 8.2,8.3,8.5,8.6,8.8	Compliant for rigid and Flexible Membranes
Code Mark BCA 2022 Conformity	Compliant (see certificate for limitations)

Restricted
Substance List
Functional &
Technical
Performance
Range and
variability

N/A

Industrial, commercial and residential building in/exterior

Significant differences of average LCIA results are declared

Primary Data

Data was collected in accordance with EN ISO 14044:2006, 4.3.2, from primary sources including factory audits, suppliers and their publications on corporate locations, logistics, technology, market share, management system, standards and commitment to improved environmental performance.

Substances of Very High Concern Contains no substances in the "Candidate List of Substances of Very High Concern for authorisation" registration with the European Chemicals Agency

Manufacturing Process

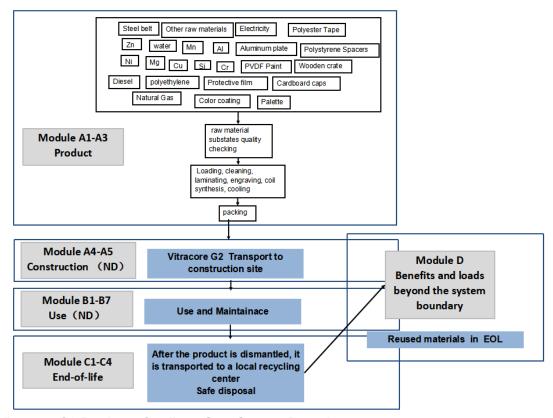


Figure 1. Vitracore G2 Products Cradle to Gate System Boundary

Base Material Origin and Detail

Table 1 Lists key components and additives by function, type, key operation, source and amount.

Table 1 Base Material

Product	Component	Material	Source	% mass
Vitracore G2	Aluminium mill coils	Aluminium	Bahrain	>95%
manufactured in United Arab	Adhesive film	Ethylene Vinyl Acetate (EVA)	India	<1%
Emirates (UAE)	Protective film	Polyethylene Film	UAE	<1%
Vitracore G2 manufactured in Jiangsu, China	Aluminium skin with coating	Aluminium plate strip	China	80-90%
	Adhesive film	Ethylene Vinyl Acetate (EVA)	USA	<1%
	Protective film	Polyethylene	China	<1%
	Aluminium mill coils	Aluminium	China	10-20%

Mass Balance

According to Table 2, products produced in the UAE and Jiangsu in China are mass-balanced.

Table 2 The mass balance of the 1 m² Vitracore G2

Vitracore G2 manufactured in United Arab Emirates (UAE)				
	Name	Weight (kg)		
Inputo	Aluminium coils	4.15		
Inputs	Adhesive film	0.03		
	Protective film	0.01		
Outputs	Vitracore G2	4.2		
Vitr	acore G2 manufactured i	n Jiangsu, China		
	Name	Weight (kg)		
	Aluminium mill coils	0.81		
Inputs	Aluminium skin with coating	3.36		
	Protective film	0.00899		
	Adhesive film	0.02		
Outputs	Vitracore G2	4.2		
Outputs	Castoff	0.06		

Greenhouse Gas Emissions and Fossil Fuel Inputs

Table 3 Greenhouse Gas Emissions and Fossil Fuel Inputs for 1 m² Vitracore G2

Fossil Fuel	Usage	Emission factors			Emission factor
	Usaye	CO ₂	CH₄	N ₂ O	sources
Vitracore G2 manufactured in United Arab Emirates (UAE)					
Diesel	0.00408L	2.73 CO₂kg/L	1.44E-04 CH₄kg/L	1.44E-04 N ₂ Okg/L	IPCC
	Vitrac	core G2 manufacti	ured in Jiangsu, C	hina	
Diesel	0.07L	2.73 CO₂kg/L	1.44E-04 CH₄kg/L	1.44E-04 N ₂ Okg/L	IPCC
Natural Gas	2.33m³	2.09 CO ₂ kg/M ³	3.73E-05 CH ₄ kg/M ³	3.73E-06 N ₂ Okg/M ³	IPCC

Program Description

EPD Scope	Cradle to gate with options (A1 to A3,C1-C4 and D) as defined by EN 15804+A2 and depicted in Figure 1
System Boundary	The system boundary with nature included processing material and energy system inputs, manufacture and transport to factory gate plus waste arising.
Reference Service Life	20 years ¹
Comparability	EPD of construction products may not be comparable if they do not comply with EN 15804
	A1 Raw material supply
	 Raw material acquisition, extraction, refining and processing Secondary material acquisition and processing Reuse of scrap product or material from a previous product system Electricity generated from all sources with extraction, refining & transport Secondary fuel energy and recovery processes
	A2 Transport internal and to the factory gate
	A3 Manufacture of product co-products and packaging plus
Product Stages Included	 Production of inputs and ancillary material System flows leaving at end-of-waste boundary allocated as coproducts
	C1 Deconstruction demolition
	C2, transport to waste processing
	C3, waste processing for reuse, recovery and/or recycling
	C4, disposal
	D, reuse, recovery and/or recycling potentials, expressed as net impacts and benefits.
Cut Off Criteria	In this study, the "Vinyl Sealer Tape 0 PVC" and "PET Packer" used in the production process were ignored because it accounted for less than 1%, and the rest of the raw materials and energy consumption were taken into account. The sum of the neglected processes over their entire life cycle does not exceed 5% of energy use and quality. The manufacturer provides transport expenditure data for all relevant material flows. Excluding machines and facilities required in the production process.
Stages Excluded	A4-5, B1-7
Data Collection Year	2021
Background Data	Table 4、Table 5

¹ The reference service life was determined by the manufacturer's extended warranty.

Allocations Method	According to ISO 14044/44, allocation is needed in several situations for LCA. One of those is recycling of end-of-life materials. Therefore, a reasonable recycling method is needed to calculate the environmental benefits of the reprocessed materials at EoL stage. This study will quote "Allocation 50/50 method". Allocation 50/50 is the most common recycling methods, which has been discussed and accepted by PEF guide It "allocates the impacts and benefits due to recycling equally between the producer using recycled material and the producer producing a recycled product" [Product Environmental Footprint (PEF) Guide,2013].
Scenario Modelling Assumption	Stage C - end of life: it is assumed that the product is disposed of by landfilling which require no waste processing, emissions data from the landfill process comes from the Ecoinvent database and transport distance of product to landfill site is 100km. Stage D – benefits and loads beyond the system boundary: includes reuse, recovery and/or recycling, and transport to recycling operations. We assume aluminium recycle content and transport distance to recycle site is 100km. and scrap aluminium replaces primary aluminium.
Product Average	Table 8

Background Data

Table 4. Data sources for the Vitracore G2 (UAE)

Component	Material Description	Material Dataset	Data Source	Publicati on Date
Vitracore G2 Produ	ct Component			
Aluminium Mill Coils	Aluminium	Aluminium strip - aluminium strip (cast & rolled) (China)	CLCD- 0.8	2013
Adhesive Film	Polyethylene Film ²	Packaging film, low density polyethylene-packaging film production, low density polyethylene (RER)	Ecoinvent 3.1	2014
Protective Film	Polyethylene	Fleece production, polyethylene	Ecoinvent 3.8	2021

² Polyethylene was used to model Ethylene Vinyl Acetate (EVA) due to historic data provided. Results remain within the tolerances stated in EN15804.

Packing				_	
Palette	Polyethylene	Fleece production, polyethylene	Ecoinvent 3.8	2021	
Paper Wrapping	Plastic Wrapping	Extrusion, plastic film	Ecoinvent 3.8	2021	
Transportation					
Transport- Aluminum coils/ Protective film	Diesel Truck	Transport, freight train, diesel	Ecoinvent 3.8	2021	
Ship Transport- Adhesive Film	Container Shipping	Transport, freight, sea, transoceanic ship-market for transport, freight, sea, transoceanic ship(Global)	Ecoinvent 3.1	2014	
Energy					
Grid Electricity	Electricity production, natural gas, 10MW	Electricity production, oil	Ecoinvent 3.8	2021	
Diesel	Diesel Oil	Market group for diesel	Ecoinvent 3.8	2021	
Water	Tap Water	Tap water production, underground water with disinfection	Ecoinvent 3.8	2021	
Waste treatment					
Packaging waste	Landfill	Treatment of inert waste, sanitary landfill	Ecoinvent 3.8	2021	
Sewage	Dispose	Market for wastewater, average	Ecoinvent 3.8	2021	

Table 5. Data sources for the Vitracore G2 (Jiangsu, China)

Component	Material Description	Material Dataset	Data Source	Publicati on Date
Vitracore G2 Produ	ct Component			
Aluminium Mill Coils /Aluminium Skin With Coating	Aluminium	Aluminium strip - aluminium strip (cast & rolled) (China)	CLCD- 0.8	2013
Protective Film	Polyethylene	Fleece production, polyethylene	Ecoinvent 3.8	2021
Adhesive Film	Polyethylene ³	Fleece production, polyethylene	Ecoinvent 3.8	2021
Packing				
Palette	Polyethylene	Fleece production, polyethylene	Ecoinvent 3.8	2021
Paper Wrapping	Plastic Wrapping	Extrusion, plastic film	Ecoinvent 3.8	2021

³ Polyethylene was used to model Ethylene Vinyl Acetate (EVA) due to historic data provided. Results remain within the tolerances stated in EN15804.

Cardboard Tube Core/Cardboard Caps	Cardboard	Corrugated Board (t n.g.), Industry LCA - Represents Specific Technology/Industry- wide/Market Average (for Process Industry Database and Technology Research), China, 2020, From cradle to gate (from resource extraction to product delivery)	CLCD- 0.9	2020
Paper Masking & Sealing Tape/ Paper Roll Labels	PET	Polyethylene terephthalate, granulate, amorphous, recycled to generic market for amorphous PET granulate	Ecoinvent 3.8	2021
Polyester Tape	Polyester	Market for fibre, polyester	Ecoinvent 3.8	2022
Steel Strapping	Steel	Hot Rolled Strip (t Unclassified), Industry LCA - Represents Specific Technology/Industry- wide/Market Average (for Process Industry Database and Technical Research), China, 2020, From Cradle to Gate (From Resource Extraction to Product Delivery)	CLCD- 0.9	2020
Wooden Crate	Wood	Spruce wood-Spruce wood (Germany)	ELCD3.0	2012
Polystyrene Spacers	Polystyrene	Polystyrene production, expandable	Ecoinvent 3.8	2021
Transportation				
Road Transport- Protective Film/ Aluminium Skin With Coating/ Adhesive Film/ Aluminium Mill Coils	Diesel Truck	Heavy Diesel Trucking (10t) (t*km Heavy Goods Vehicle), Industry LCA - Represents Specific Technology/Industry- wide/Market Average (for Process Industry Database and Technology Research), China, 2020, From cradle to gate (from resource extraction to product delivery)	CLCD- 0.9	2020
Energy		to product donvery)		
Grid Electricity-	Grid Electricity-Product	National average grid electricity	CLCD-0.9	2021
Diesel	Diesel Oil	Diesel (market average)	CLCD-0.9	2021
Natural Gas	Natural Gas	Natural Gas (National Average) (M3 Unclassified), Industry LCA - Represents Specific Technology/Industry- wide / Market Average (for Process Industry Database and Technology Research), China, 2020, Cradle to Gate (From Resource Extraction to Product Delivery)	CLCD- 0.9	2020
Water	Tap Water	Tap Water (t Not Classified), Industry LCA - Represents Specific Technology/Industry- wide/Market Average (for Process Industry Database	CLCD- 0.9	2020

		and Technology Research), China, 2020, From Cradle to Gate (From Resource Extraction to Product Delivery)							
Waste Treatment									
Packaging Waste	Landfill	Treatment of inert waste, sanitary landfill	Ecoinvent 3.8	2021					
Hazardous Waste	Incineration	Treatment of hazardous waste, hazardous waste incineration	Ecoinvent 3.8	2021					
Sewage	Dispose	Market for wastewater, average	Ecoinvent 3.8	2021					

Data Quality Assessment

The data quality assessment addressed the following parameters: time-related coverage, geographical coverage, technological coverage, precision, completeness, representativeness, consistency, reproducibility, sources of data, and uncertainty.

Table 6. Data quality assessment for the Vitracore G2 product system

Data Quality Parameter	Data Quality Discussion							
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 3 years old (typically 2020 and 2021). All of the data used represented an average of at least one year's worth of data collection, and up to three years in some cases. Manufacturer-supplied data (primary data) are based on annualized production for 2021.							
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provides the best representation of the current data. Electricity consumption for product manufacturing was modeled using representative data from Saudi Arabia. The surrogate data used in the assessment is representative of business globally or in other parts of the world. Data representing operations in the rest of the world is considered similar enough to actual processes. Data representing product disposition is based on regional statistics. For the most part, data is representative of the actual technologies used for							
Technology Coverage: Specific technology or technology mix	processing, transportation, and manufacturing operations. Representative fabrication datasets, specific to the type of material, are used to represent the actual processes, as appropriate.							
Precision: Measure of the variability of the data values for each data expressed	Data collected for operations were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.							
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the electrical cables and accessories products. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.							

Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources, and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.						
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Different portions of the product life cycle are equally considered; however, it must be noted that final disposition of the product is based on assumptions of current practices in Australia						
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.						
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at the China and United Arab Emirates (UAE) Factories represent an annual average and are considered of high quality due to the length of time over which these data are collected. For secondary LCI datasets, CLCD 0.8 and 0.9, Ecoinvent v3.8 and v3.1, ELCD v3.0 LCI data are used.						
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the Vitracore G2 and packaging is low. Actual supplier data for upstream operations was not available for all suppliers and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years).						

LCA Scenarios and Additional Technical Information

EoL stage (C1 - C4, D)

The disposal stage includes demolition of the products (C1); transport of the Vitracore G2 to waste treatment facilities (C2); waste processing (C3); and associated emissions as the product degrades in a landfill (C4). For the Vitracore G2, no emissions are generated during demolition (C1) while no waste processing (C3) is required for underground deposit. After demolition, non-recyclable waste is disposed of in landfills(C4), and the landfill process is connected to the Ecoinvent database.

Transportation of waste materials at end-of-life (C2) assumes a 100 km average distance to disposal. Aluminium materials in the product are assumed at end-of-life.

The data for waste transportation of per t*km are obtained from Ecoinvent 3.8. The functional unit was defined as diesel trucks completing 1t*km on the suburbs highway with 7.5~16 ton load capacity.

Data from the landfill comes from Ecoinvent 3.8. It represents the treatment of waste,

including foundation sealing, leachate collection systems, leachate wastewater treatment plants.

Table 7.EoL parameters for Vitracore G2, per 1 m²

Processes	Unit	Vitracore G2 (UAE)	Vitracore G2 (Jiangsu, Chin)		
Collection Process	kg: collected separately	4.2	4.2		
Recovery System	kg :for recycling	4.116	4.116		
Safe Disposal	kg: for final disposal	0.84	0.84		
Transportation	km	100	100		

Product Average

The environmental impact category indicators are also reported based on the EFv3.1 characterization factors according to EN15804.

Table 8. LCA impact indicators

Core environmental im	pact indicators	
Impact category	Indicator	Unit
Climate change – fossil	GWP-fossil	kg CO2 eq
Climate change – biogenic	GWP-biogenic	kg CO2 eq
Climate change - land use and land use change	GWP-luluc	kg CO2 eq
Climate change – total	GWP-total	kg CO2 eq
Ozone Depletion	ODP	kg CFC 11 eq.
Acidification	AP	mol H+ eq.
Depletion of abiotic resources -fossil fuels	ADP-fossil	MJ, net calorific value
Eutrophication aquatic freshwater	EP-freshwater	kg P eq.
Eutrophication aquatic marine	EP-marine	kg N eq.
Eutrophication terrestrial	EP-terrestrial	mol N eq

Core environment	Core environmental impact indicators										
Impact category	Indicator	Unit									
Photochemical ozone formation	POCP	kg NMVOC eq.									
Water use ⁴	WDP	m3 world eq									
Additional environmental impact indicators											
Impact category	Indicator	Unit									
Particulate Matter emissions	PM	Disease incidence									
lonizing radiation, human health	IRP	kBq U235 eq									
Eco-toxicity (freshwater)	ETP-fw	CTUe									
Human toxicity, cancer effects	HTP-c	CTUh									
Human toxicity, non-cancer effects	HTP-nc	CTUh									
Land use related impacts/ Soil quality	SQP	dimensionless									

Results of the Life Cycle Assessment are presented below.

Table 9. Cradle to Gate LCA results for 1m² Vitracore G2

	Core environmental impact indicators-1											
Product/LCIA Impact	GWP- total	GWP- Fossil	GWP- Biogenic	GWP- Land use	ODP		AP					
Vitracore G2 (UAE)	7.41E+01	6.93E+01	7.89E-01	0.00E+00	9.11E-07	5	.05E-01					
Vitracore G2 (Jiangsu,China)	8.54E+01	8.05E+01	5.85E-01	0.00E+00	8.55E-07	5	.38E-01					
	Core env	ironmental	impact ind	licators-2								
Product/LCIA Impact	EP Fresh water	EP terrestrial	EP- marine	POCP	ADP fossil	ADP- mineral and metal						
Vitracore G2 (UAE)	1.35E-03	8.82E-01	7.93E-02	2.44E-01	8.55E+02	2.91E-05						
Vitracore G2 (Jiangsu,China)	9.91E-04	9.44E-01	8.46E-02	2.59E-01	1.10E+03	1	1.08E-05					
-	Additional	environmer	ntal impact	indicators								
Product/LCIA Impact	РМ	IRP	ET freshwate r	HT cancer	HT-nor HT cancer cancer		SQP					
Vitracore G2 (UAE)	ND	1.28E+00	3.93E+01	-3.50E-06	-6.80E-0	04	ND					
Vitracore G2 (Jiangsu,China)	ND	1.38E+00	1.27E+04	-2.97E-06	-6.33E-0	04	ND					

⁴ The results of this environmental impact indicator shall be used with care as uncertainties on these results are high or as there is limited experience with the indicator.

Information Modules

The LCA and EPD declare results for mandatory A1-A3,C1-C4 and D information modules as shown in Figure 2. Optional modules and stages A3-A4,B1-B7 are excluded and are marked Not Declared (ND). ND does not indicate zero inventory or impact results.

	Produ	ct		Const	ruction	Use st	Use stage of building fabric and operation End of life stage							Resource recovery stage			
	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
Modules	Raw material supply	★ Transport	✓ Manufacturing	ZM Transport	Construction installation	n N N D	Maintenance D	Repair	Replacement DAM	Refurbishment	Operational energy use	Operational water use	◆ De-construction demolition		★ Waste processing	◆ Disposal	Reuse-Recovery-Recycling-potential
Modelling		Actual			Scenarios									Optional			

MND = Module not declared ✓= included

Figure 2 Phases and Stages Cradle to Gate

The description of life cycle stage A-D are as follows:

- A1 Extraction and processing of raw materials for the Vitracore G2 products components.
- A2 Transport of component materials to the manufacturing facilities
- A3 Manufacturing of Vitracore G2 products and packaging
- A4 Transport of product (including packaging) to the building site (ND)
- A5 Install the product (ND)
- B1 Use of the Vitracore G2 products in a building setting (ND)
- B2 Maintenance of the usage phase (ND)
- B3-B5 Repairing, replacing and refurbishing during the use phase (ND)
- B6 Energy use during the use phase (ND)
- B7 Water use during the use phase (ND)
- C1 Demolition of the products is accomplished using hand tools with no associated emissions and negligible impacts
- C2 Transport of Vitracore G2 products to local recycling centre at end-of-life
- C3 The products is disposed of by using hand tools manually strip the metal material from it which require no waste processing
- C4 Disposal of Vitracore G2 products for underground deposit
- D Recyclable metal from C3

Material Flow Diagram

In the process of producing Vitracore G2, some waste (such as: plastic waste, metal waste) will be generated, these scraps will be sold as by-products after processing, and the production of 4.2kg Vitracore G2 will produce 0.00504kg~0.03kg by-products, so the environmental impact is distributed according to the weight of the main by-products, main products: 93.3%~99.88%, by-products: 0.12%~6.7%.

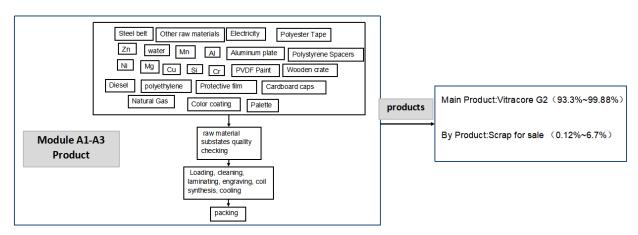


Figure 3 Material Flow Diagram

Cradle to Gate + Options Inventory

Table 10 Inventory Resource Use Results/1 m² Vitracore G2 (UAE) ⁵

	Table to livelitory Resource use Results/Till Vitracule 92 (UAE)												
Stages			Product			End of I	ife stage		Resource recovery stage				
		A1	A2	А3	C1	C2	C3	C4	D				
Module Code ⁶ s	Unit	Raw material supply	Transport	Manufacturing	De-construction demolition	Transport	Waste processing	Disposal	Reuse, Recovery, Recycling				
OMD for all	len 000 e n	0.005.04	4 505 04	4.005.00	0.005.00	2.225.04	4 245 04	0.005+00	0.405+04				
GWP-fossil	kg CO2 eq	9.06E+01	1.59E-01	1.09E-02	0.00E+00	2.23E-01	1.31E-01	0.00E+00	-2.18E+01				
GWP-biogenic	kg CO2 eq	3.05E-01	4.50E-03	1.72E-05	0.00E+00	5.69E-03	4.89E-01	0.00E+00	-1.55E-02				
GWP-luluc	kg CO2 eq	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
GWP-total	kg CO2 eq	9.50E+01	1.63E-01	1.09E-02	0.00E+00	2.28E-01	5.35E-01	0.00E+00	-2.18E+01				
ODP	kg CFC 11 eq.	1.07E-06	1.29E-08	1.05E-10	0.00E+00	4.71E-08	2.67E-09	0.00E+00	-2.18E-07				
AP	mol H+ eq.	5.36E-01	1.66E-03	2.91E-06	0.00E+00	1.44E-03	1.07E-04	0.00E+00	-3.45E-02				
ADP-fossil	MJ, net calorific value	1.12E+03	2.47E+00	8.81E-03	0.00E+00	3.67E+00	2.22E-01	0.00E+00	-2.75E+02				
EP-freshwater	kg P eq.	1.40E-03	2.15E-05	9.96E-08	0.00E+00	2.31E-05	1.02E-05	0.00E+00	-1.00E-04				
EP-marine	kg N eq.	8.57E-02	7.22E-04	1.00E-06	0.00E+00	5.20E-04	1.49E-03	0.00E+00	-9.17E-03				
EP-terrestrial	mol N eq	9.49E-01	7.88E-03	1.09E-05	0.00E+00	5.68E-03	3.25E-04	0.00E+00	-8.11E-02				
POCP	kg NMVOC eq.	2.60E-01	2.10E-03	3.09E-06	0.00E+00	1.55E-03	2.70E-04	0.00E+00	-1.99E-02				
ADP-minerals&metals	s kg Sb eq.	3.16E-05	6.82E-07	1.12E-09	0.00E+00	1.35E-06	5.14E-08	0.00E+00	-4.61E-06				
ADP- fossil	kg Sb eq.	ND	ND	ND	ND	ND	ND	ND	ND				
WDP	m3 world eq	3.57E+02	1.04E+01	2.70E-02	0.00E+00	9.28E+00	7.76E+00	0.00E+00	-7.76E+00				

⁵ Results are reported in scientific notation where 1.00E+01 is 10 and 1.00E-01 is 0.1

⁶ See 'Table 5 LCA impact indicators' for full module names

Table 11 Inventory Resource Use Results/1 m² Vitracore G2 (Jiangsu,China) ⁷

			•						
Stages			Product			End of I	ife stage		Resource recovery stage
		A1	A2	А3	C1	C2	C3	C4	D3
Module Codes ⁸	Unit	Raw material supply	Transport	Manufacturing	De-construction demolition	Transport	Waste processing	Disposal	Recycling
GWP-fossil	kg CO2 eq	9.63E+01	5.70E-01	5.07E+00	0.00E+00	2.23E-01	1.31E-01	0.00E+00	-2.18E+01
GWP-biogenic	kg CO2 eq	1.05E-01	1.07E-03	8.73E-05	0.00E+00	5.69E-03	4.89E-01	0.00E+00	-1.56E-02
GWP-luluc	kg CO2 eq	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GWP-total	kg CO2 eq	1.01E+02	5.71E-01	5.07E+00	0.00E+00	2.28E-01	5.35E-01	0.00E+00	-2.18E+01
ODP	kg CFC 11 eq.	1.02E-06	2.49E-11	6.87E-10	0.00E+00	4.71E-08	2.67E-09	0.00E+00	-2.18E-07
AP	mol H+ eq.	5.68E-01	3.42E-03	1.29E-05	0.00E+00	1.44E-03	1.07E-04	0.00E+00	-3.46E-02
ADP-fossil	MJ, net calorific value	1.36E+03	1.20E+01	4.16E-02	0.00E+00	3.67E+00	2.22E-01	0.00E+00	-2.76E+02
EP-freshwater	kg P eq.	1.06E-03	3.15E-08	1.62E-06	0.00E+00	2.31E-05	1.02E-05	0.00E+00	-1.01E-04
EP-marine	kg N eq.	9.01E-02	1.67E-03	8.37E-06	0.00E+00	5.20E-04	1.49E-03	0.00E+00	-9.18E-03
EP-terrestrial	mol N eq	1.00E+00	1.82E-02	3.75E-05	0.00E+00	5.68E-03	3.25E-04	0.00E+00	-8.12E-02
POCP	kg NMVOC eq.	2.72E-01	4.50E-03	9.17E-04	0.00E+00	1.55E-03	2.70E-04	0.00E+00	-1.99E-02
ADP-minerals&metals	kg Sb eq.	1.40E-05	1.33E-09	1.18E-08	0.00E+00	1.35E-06	5.14E-08	0.00E+00	-4.61E-06
ADP- fossil	kg Sb eq.	ND	ND	ND	ND	ND	ND	ND	ND
WDP	m3 world eq	2.10E+02	4.40E-03	2.32E-01	0.00E+00	9.28E+00	7.76E+00	0.00E+00	-7.77E+00

Note Additional Environment Indicators are not declared in this EPD.

⁷ Results are reported in scientific notation where 1.00E+01 is 10 and 1.00E-01 is 0.1

⁸ See 'Table 5 LCA impact indicators' for full module names

Table 12 Resource Use Results/1 m2 Vitracore G2 (UAE)

			Product			End of li	fe stage		Resource recovery stage
		A1	A2	A3	C1	C2	C3	C4	D
Module Codes	Unit	Raw material supply	Transport	Manufacturing	De-construction demolition	Transport	Waste processing	Disposal	Reuse, Recovery, Recycling
Net Fresh Water Use	m³	0.00E+00	0.00E+00	1.00E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Material	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Renewable Fuel	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Renewable Material	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Renewable Not Feedstock	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Renewable Total	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Non-renewable Fuel	MJ ncv	0.00E+00	0.00E+00	1.44E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Non-renewable Material	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Non-renewable Energy Not Feedstock	MJ nev	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Non-renewable Total	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Hazardous Waste Disposed	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Non-hazardous Waste Disposed	kg	0.00E+00	0.00E+00	3.50E-03	0.00E+00	0.00E+00	8.40E-01	0.00E+00	0.00E+00
Radioactive Waste Disposed	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Components For Reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Material For Recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.12E+00
Material For Energy Recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Energy Electrical	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Energy Thermal	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Table 13 Resource Use Results/1 m2 Vitracore G2 (Jiangsu,China)

			Product			End of li	fe stage		Resource recovery stage
		A1	A2	A3	C1	C2	C3	C4	D
Module Codes	Unit	Raw material supply	Transport	Manufacturing	De-construction demolition	Transport	Waste processing	Disposal	Reuse, Recovery, Recycling
Net Fresh Water Use	m³	0.00E+00	0.00E+00	3.10E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Material	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Renewable Fuel	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Renewable Material	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Renewable Not Feedstock	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Renewable Total	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Secondary Non-renewable Fuel	MJ ncv	0.00E+00	0.00E+00	2.56E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Non-renewable Material	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Non-renewable Energy Not Feedstock	MJ ncv	0.00E+00	0.00E+00	8.28E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Primary Energy Non-renewable Total	MJ ncv	0.00E+00	0.00E+00	8.28E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Hazardous Waste Disposed	kg	0.00E+00	0.00E+00	1.68E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Non-hazardous Waste Disposed	kg	0.00E+00	0.00E+00	6.00E-02	0.00E+00	0.00E+00	8.40E-01	0.00E+00	0.00E+00
Radioactive Waste Disposed	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Components For Reuse	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Material For Recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.12E+00
Material For Energy Recovery	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Energy Electrical	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Exported Energy Thermal	MJ ncv	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

Interpretation

For given figures, the contribution of manufacturing stage to the LCIA results of all the Vitracore G2 products are highest except for GWP-Biogenic. This is because the production process needs a lot of materials and energy. For the AP and EP , they have much to do with waste disposal in the waste stage.

In the EoL phase, the environmental impact is caused by the landfill.

In Module D, 98% of the scrap can be recycled, thus offsetting a significant environmental impact.

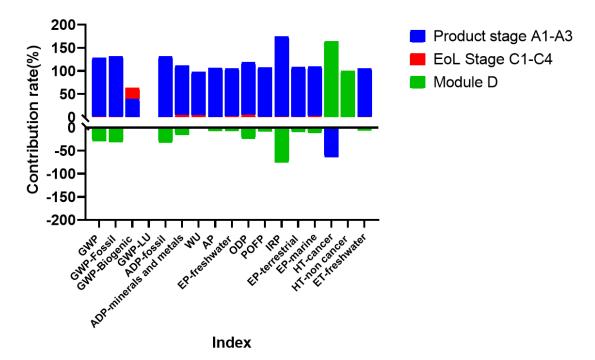


Fig 3. Vitracore G2 (UAE) product each stage contribution to LCA results

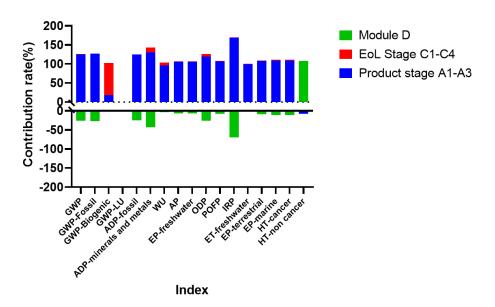


Fig 4. Vitracore G2 (Jiangsu, China) product each stage contribution to LCA results

Sensitivity Analysis

From calculation results, it is seen that most of the environmental impact is caused by Module A1-A3. It can be seen from the result table that the use of raw aluminium coil, aluminium skin, aluminium panel increases the environmental impact of module A1-A3, because the production of aluminium will cause more environmental impact. Therefore, in the process of producing aluminium coils, using more recycled aluminium will reduce environmental emissions.

Aluminium coil, aluminium skin with coating linked to the CLCD database of aluminium plate produced with 100% primary aluminium.

The sensitivity analysis was carried out to understand the environmental impact of the aluminium strip produced from 20% recycled aluminium in the production of Vitracore G2, so the aluminium strip produced by 100% primary aluminium connected by aluminium coil, aluminium skin, aluminium plate was replaced with aluminium strip produced by 80% primary aluminium.

According to the results, it can be seen that the HT- cancer and HT-non cancer indicators have the greatest impact.

Table 12. Sensitivity analysis table

Product/ LCIA Impact	Core environmental impact indicators								
	GWP- total	GWP- Fossil	GWP- Biogenic	GWP- Land use	ODP	AP	EP- Fresh water	EP- terrestrial	EP- marine
1.Vitracore G2(UAE) (Results without recycled aluminium)	7.41E+01	6.93E+01	7.89E-01	0.00E+00	9.11E-07	5.05E-01	1.35E-03	8.82E-01	7.93E-02
2.Vitracore G2(UAE) (Results with recycled aluminium)	5.80E+01	5.73E+01	8.33E-01	0.00E+00	4.16E-07	5.17E-02	5.95E-04	1.28E-01	1.52E-02
Percentage of change	-21.70%	-17.34%	5.66%	0.00%	-54.34%	-89.76%	-56.04%	-85.43%	-80.83%
3 Vitracore G2 (Jiangsu, China) (Results without recycled aluminium)	8.54E+01	8.05E+01	5.85E- 01	0.00E+00	8.55E-07	5.38E-01	9.91E-04	9.44E-01	8.46E-02
4 Vitracore G2 (Jiangsu, China) (Results with recycled aluminium)	7.14E+01	7.00E+01	6.24E- 01	0.00E+00	4.26E-07	1.45E-01	3.34E-04	2.91E-01	2.91E-02
Percentage of change	-16.32%	-12.95%	6.62%	0.00%	-50.16%	-35.59%	-66.29%	-69.20%	-79.33%
124.7%	124.7%	124.7%	124.7%	124.7%	124.7%	124.7%	124.7%	124.7%	124.7%

	C	ore environ	mental imp	act indicato	rs	Additional environmental impact indicators				
Product/LCIA Impact	POCP	ADP- fossil	ADP- mineral and metal	WU	PM	IRP	ET- freshwa ter	HT- cancer	HT-non cancer	SQP
1 Vitracore G2(UAE) (Results without recycled aluminium)	2.44E- 01	8.55E+ 02	2.91E- 05	3.77E+ 02	ND	1.28E+ 00	3.93E+ 01	-3.50E- 06	-6.80E- 04	ND
2 Vitracore G2(UAE) (Results with recycled aluminium)	3.54E- 02	4.03E+ 02	2.62E- 05	2.04E+ 02	ND	1.14E+ 00	3.08E+ 00	6.07E- 06	7.12E- 04	ND
Percentage of change	- 85.50%	- 52.92%	- 10.03%	- 45.94%	ND	-11.07%	- 92.15%	273.20 %	204.70 %	ND
3 Vitracore G2 (Jiangsu, China) (Results without recycled aluminium)	2.59E- 01	1.10E+ 03	1.08E- 05	2.20E+ 02	ND	1.38E+ 00	1.27E+ 04	-2.97E- 06	-6.33E- 04	ND
4 Vitracore G2 (Jiangsu, China) (Results with recycled aluminium)	7.83E- 02	7.10E+ 02	8.29E- 06	6.98E+ 01	ND	1.26E+ 00	2.62E+ 03	5.33E- 06	5.74E- 04	ND
Percentage of change	- 69.82%	- 35.59%	- 23.41%	- 68.24%	ND	-8.87%	- 79.33%	279.39 %	190.68 %	ND

References for this EPD

- 1. British Standards Institution (BSI). EN 15804:2012+A2:2019, Sustainability of construction works Environmental product declarations Core rules for the product category of construction product [S]. London: BSI,2021.
- 2. Ecoinvent, Switzerland. Ecoinvent database. http://www.ecoinvent.org/
- 3. IKE, 2012a. Chinese Life Cycle Database–CLCD accessed in March 2015 http://www.ike-global.com/products-2/chinese-lca-database-clcd. GreenTag™ (2016
- 4. ISO 14025:2006 Environmental labelling & declarations Type III EPDs Principles & procedures ISO 14031:1999 EM: Environmental performance evaluation: Guidelines
- 5. ISO 14040:2006: Life cycle assessment (LCA): Principles & framework
- 6. ISO 14044:2006: LCA: Requirement & guideline for data review: LCI; LCIA, Interpretation results
- 7. Liu X L, Wang H T, Chen J, He Q, Zhang H, Jiang R, Chen X X, Hou P. 2010.Method and basic model for development of Chinese reference Life cycle database of fundamental industries [J]. Acta Scientiae Circumstantiate, 30(10): 2136-2144.
- 8. Global GreenTag International. Product Category Rules. http://www.globalgreentag.com/greentag-epd-program