# **Weathertex**

Ittain

Weathertex Pty Ltd Primed Flat Sheet and Weatherboards Primelok 170mm and 200mm 470 Masonite Rd, Heatherbrae New South Wales Australia 2324 Version Number: 2.0 Date Updated: 05 Nov 2024

## Global GreenTag



**Compliant to ISO14025** & EN15804+ A2 2019

EPD Nos. **Issue Date** Valid to

WXN092024EP WXN102024EP 15 Oct 2024 15 Oct 2029



1





**Declaration Owner** 

Weathertex Pty Ltd

NSW 2324 Australia

470 Masonite Rd, Heatherbrae

weathertex

Phone: +61 (0)2 4980 3100

https://weathertex.com.au

#### **Mandatory Disclosures**

| EPD type                        | Cradle to grave                                                                                                                                                                                                                        | Issue Date   | 15 Oct 2024    |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--|--|--|--|
| Range Name                      | Weathertex Primed Flat Sheet & Weatherboard                                                                                                                                                                                            | Valid Until  | 15 Oct 2029    |  |  |  |  |
| Prodcut Name                    | Primelok 170                                                                                                                                                                                                                           | Primelok 200 |                |  |  |  |  |
| EPD Number                      | WXN092024EP                                                                                                                                                                                                                            | WXN102024EP  |                |  |  |  |  |
| Objectives                      | To show improved, net-zero, net-positive and regenerative results and timely imperatives to secure viable climate and biodiversity on earth against a background of increasing disasters attributable to anthropogenic climate change. |              |                |  |  |  |  |
| Communication                   | This EPD discloses potential environmental outcomes compliant with ISO14025:2010 and independent external verification of this declaration and data <sup>a</sup> ensures it is fit for business-to-consumer communication [1].         |              |                |  |  |  |  |
| Product Category<br>Rules (PCR) | Global GreenTag International Platform EPD compliant with ISO14025 standard [1] impact assessment methodology in reference EN15804 [2] and PCR WNB: 2023 [3]                                                                           |              |                |  |  |  |  |
| Comparability                   | Different program EPDs may not be comparable.<br>on the product category rules and data source us                                                                                                                                      |              | ther dependent |  |  |  |  |
| Explanations                    | Further explanatory information is available at info@globalgreentag.com or by contacting certification1@globalgreentag.com.                                                                                                            |              |                |  |  |  |  |
| Reliability                     | LCIA results are relative expressions that do not predict impacts on category endpoints, exceeding of thresholds, safety margins or risks.                                                                                             |              |                |  |  |  |  |
|                                 |                                                                                                                                                                                                                                        |              |                |  |  |  |  |

#### **EPD Program Operator**

LCA and EPD Producer

Global GreenTag International Pty Ltd L38, 71 Eagle St., Brisbane QLD 4000 Australia Phone: +61 (0)7 33 999 686 http://www.globalgreentag.com



green product certification trust brands

#### **Demonstration of Verification**



Jones

15 Oct 2024 24 09 2024

O O LI

Ecquate Pty Ltd

PO Box 123 Thirroul

NSW 2515 Australia

Phone: +61 (0)7 5545 0998

Ecquate building ecopositive

☑ Internal

☑ External

LCA Developed by Delwyn Jones, The Evah Institute

EPD Developed by Dr Sharmina Begum, The Evah Institute

EPD Reviewed by David Baggs, Global GreenTag Pty Ltd

I, the undersigned, verifier, hereby confirm my examination did not find any relevant deviations by the EDP owner, LCA report or PCRs based on EN 15804 2012+A2:2019 and ECO Platform agreed interpretations by CEN TR 16970. Company-specific, upstream and downstream data in the LCA & environmental features report files held at The Evah Institute were plausible and consistent. This **Verifier Statement** verification applied Global GreenTag International adopted ECO Platform checklists and this EPD states where to find programme rules and PCRs.



Verified by Murray Jones Ecquate Pty Ltd



#### **Program Description**

| - J                                                                  |              |                                                                       |              |              |                            |                        |          |        |         |                   |            |           |              |              |               |              |       |              |            |              |
|----------------------------------------------------------------------|--------------|-----------------------------------------------------------------------|--------------|--------------|----------------------------|------------------------|----------|--------|---------|-------------------|------------|-----------|--------------|--------------|---------------|--------------|-------|--------------|------------|--------------|
| EPD Scope                                                            | TI           | The scope is cradle to grave A1 to C4 + D as defined by ISO14025. [1] |              |              |                            |                        |          |        |         |                   |            |           |              |              |               |              |       |              |            |              |
| System boundary                                                      |              |                                                                       |              |              | oundar <u>:</u><br>transpo |                        |          |        |         |                   |            |           |              |              |               | •            |       | pro          | cess       | sing,        |
| Stages included                                                      |              |                                                                       |              |              | rations<br>B6 Wa           |                        |          |        |         |                   |            |           |              |              |               |              | ,     |              |            | ,            |
| Information                                                          | Fi           | gure                                                                  | e 1 o        | depic        | ts A1 t                    | o C4                   | l mo     | du     | les     | insi              | de th      | nis cra   | dle t        | o gra        | ve sy         | /stem        | bound | dary         | <i>'</i> . |              |
| Model                                                                |              |                                                                       |              |              | Buil                       | ding                   | l Lif    | e C    | ycl     | e A               | sses       | ssmer     | nt           |              |               |              |       | E            | Beyo       | nd           |
| Information                                                          |              | Ac                                                                    | tua          | I .          |                            |                        |          |        |         | Sc                | enai       | rios      |              |              |               |              |       | 5            | syste      | em           |
| Stages                                                               | Ρ            | rodu                                                                  | ıct          | Con          | struct                     | struct Use End-of-Life |          |        |         | Benefit &<br>load |            |           |              |              |               |              |       |              |            |              |
| Modules                                                              | A1           | A2                                                                    | A3           | A4           | A5                         | B1                     |          |        |         | B5                | B6         | B7        | C1           | C2           | C3            | C4           |       | D1           | D2         | D3           |
| Operations<br>Cradle to Grave<br>Fate & beyond<br>system boundary    | Resources    | Transport                                                             | Manufacture  | Transport    | Construct                  | Use                    | Maintain | Repair | Replace | Refurbish         | Energy use | Water use | Demolish     | Transport    | Process Waste | Disposal     |       | Reuse        | Recovery   | Recycling    |
| Flows                                                                | $\checkmark$ | $\checkmark$                                                          | $\checkmark$ | $\checkmark$ | $\checkmark$               | 0                      | V        | V      | )       | 0                 | 0          | 0         | $\checkmark$ | $\checkmark$ | 0             | $\checkmark$ |       | $\checkmark$ |            | $\checkmark$ |
| Figure 1 Modules A to C Cradle to Grave and D Beyond System Boundary |              |                                                                       |              |              |                            |                        |          |        |         |                   |            |           |              |              |               |              |       |              |            |              |

Figure 1 Modules A to C Cradle to Grave and D Beyond System Boundary

| Data Sources              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Primary Data              | Data is from primary sources 2018 to 2023 including manufacturer and supplier standards, logistics, technology, market share and management system in accordance with EN ISO 14044:2006, 4.3.2. All are physically allocated not economically allocated.                                                                                                                                                                                                                               |
| A1-A3 Stage<br>inclusions | Operations include all known raw material acquisition, refining and processing plus scrap<br>or material reuse from prior systems; electricity generated from all sources with extraction,<br>refining & transport plus secondary fuel energy and recovery processes. Also, transport to<br>factory gate; manufacture of inputs, ancillary material, product, packaging, maintenance,<br>replacement plus flows leaving at end-of-waste boundary and fate of all flows at end of life. |
| Variability               | Significant differences of average LCIA results are declared.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chemicals of<br>Concern   | Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".                                                                                                                                                                                                                                                                                                                                                    |

#### LCA Data Quality

Data quality parameters are tabled below. Data was <10 years, cut-off & quality complies with ISO14025.<sup>[1]</sup>

| Background  | Data Quality | Parameters and U | Parameters and Uncertainty (U)                        |            |            |  |  |  |  |
|-------------|--------------|------------------|-------------------------------------------------------|------------|------------|--|--|--|--|
| Correlation | Metric σg    | U ±0.01          | U ±0.05                                               | U ±0.10    | U ±0.20    |  |  |  |  |
| Reliability | Reporting    | Site Audit       | Expert verify                                         | Region     | Sector     |  |  |  |  |
|             | Sample       | >66% trend       | >25% trend                                            | >10% batch | >5% batch  |  |  |  |  |
| Completion  | Including    | >50%             | >25%                                                  | >10%       | >5%        |  |  |  |  |
|             | Cut-off      | 0.01%w/w         | 0.05%w/w                                              | 0.1%w/w    | 0.5%w/w    |  |  |  |  |
| Temporal    | Data Age     | <3 years         | ≤5 years                                              | <7.5 years | <10 years  |  |  |  |  |
|             | Duration     | >3 years         | <3 years                                              | <2 years   | 1 year     |  |  |  |  |
| Technology  | Typology     | Actual           | Comparable                                            | In Class   | Convention |  |  |  |  |
| Geography   | Focus        | Process          | Line                                                  | Plant      | Corporate  |  |  |  |  |
|             | Range        | Continent        | Nation                                                | Plant      | Line       |  |  |  |  |
|             | Jurisdiction | Represer         | Representation is Global. Australasia and Pacific Rim |            |            |  |  |  |  |



#### System Scope and Boundaries

Figure 2. shows included processes in a cradle to grave system boundary to end of life fates reuse, recycling, or landfill grave.

Stages A1 to 3 model actual operations to acquire, refine, transport, fabricate, coat, use, clean, repair, reuse and dispose of metal, masonry, ceramic, timber, glass, plastic and composites.

Stage A4 to C4 are modelled on typical scenarios to forecast operations including those of:

- Mining, extracting and refining resources to make commodities and packaging;
- Acquiring, cultivating, harvesting, extracting, refining produce and biomass;
- Fuel production to supply power and process energy and freight;
- Chemicals use in processing resources, intermediates and ancillaries;
- Process energy, fuel and freight of resources, intermediates and ancillaries;
- Use, cleaning, recoating, repair, recycling, re-use and landfill, as well as
- Infrastructure process energy transformed and material wear loss e.g. tyres.

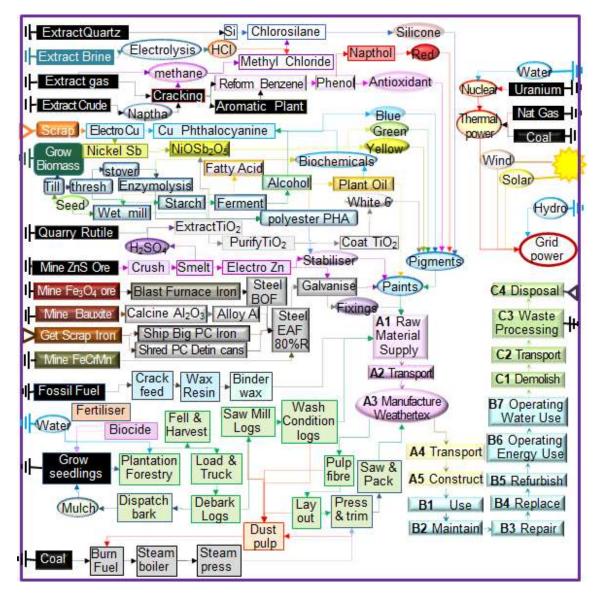



Figure 2. Product Process Flow Chart



#### **Details of Manufacturer**

The declared product Weathertex natural and primed flat sheet and weatherboard is used for exterior cladding of residential and commercial buildings to protect against potential damage caused by rain, snow, wind or hail. The manufacturer, Weathertex, founded in 1939 in Raymond Terrace, NSW is 100% Australian owned and makes product to leading industrial standards for a cleaner environment. The base materials are 97% hardwood timber and 3% natural wax. All timber is from PEFC certified state or private forest. Weathertex Weatherboards contain no added silica, glues, resins or formaldehyde.

#### **Product Information**

This section provides data required to calculate assessment results factoring different mass and periods.

| Range Names         | Weathertex Primed Flat Sheet and Weatherboards                               |
|---------------------|------------------------------------------------------------------------------|
| Brand Name & Code   | Primed Primelok 170mm and Primed Primelok 200mm                              |
| Factory warranty    | Fit for purpose use, 10 years only                                           |
| Manufacturer        | Weathertex Pty Ltd                                                           |
| Factory address     | 470 Masonite Rd, Heatherbrae NSW 2324 Australia                              |
| Site representation | Australasia                                                                  |
| Time                | Made and sold in 2022 for single use                                         |
| Application         | Cladding in bushfire attack levels (BAL 19) up to and including construction |
| Function            | Internal and external wall and ceiling cladding weatherboard                 |
| Lifetime            | 60 years Reference Service Life (RSL) [5,6] [ISO 15686]                      |
| Declared unit       | Declared product of 9.88kg/m <sup>2</sup> cladding of building surfaces      |
| Functional unit     | 60 years external use of declared product/kg cradle to grave and beyond      |

#### Whole of life Performance

This section provides qualitative information on whole of life performance.

| Material quality    | >95% PEFC and Global GreenTag International certified sustainable lumber.          |
|---------------------|------------------------------------------------------------------------------------|
| Finishes            | Weathertex primed weatherboards offer a smooth or textured surface finish.         |
| Effluent            | LCI results and ESCAP raised no red light concerns in emissions to water.1         |
| Waste               | Cradle to grave waste to landfill from operations was non-hazardous.               |
| Standard Reference  | https://drive.google.com/file/d/1LrhPfYrAX2hhUp383F3Q6fJYbkNWxp47/view             |
| Practices Reference | https://weathertex.com.au/construction-details/                                    |
| Moisture drainage   | Cavity vents allow moisture ingress to drain.                                      |
| Disposal            | No production waste is sent to river, land or ocean outfalls or council landfills. |

#### Whole of life Health Safety & Environment Performance

This section provides qualitative information on Health Safety & Environment whole of life performance.

| Wildlife safety<br>Ecology Effects | Low VOC or formaldehydes<br>No potential in-use impacts on environment or health are known.                                                                                                                                                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Health Safety &<br>Environment     | Apart from compliance to occupational and workplace health safety and<br>environmental laws no additional personal protection is considered essential for<br>manufacture, use or reuse.                                                                                                                     |
| Health Protection                  | The product does not contain levels of carcinogenic, toxic or hazardous substances that warrant ecological or human health concern cradle to grave. It passed the Eco specifier Cautionary Assessment Process (ESCAP) and no issues or red-light concerns existed for product human or ecological toxicity. |
| Environmental<br>Protection        | Continuous improvement under the maker's uncertified management system avoids toxics, waste and pollution plus reduce their material and energy use.                                                                                                                                                        |

<sup>1</sup> According with national standards in ANZECC Guideline For Fresh & Marine Water Quality (2000)



#### **Product Components Base Material Origin and Detail**

This section lists Weathertex key components by function, type, sources and % mass share.

| Function    | Component                         | Source     | Primelok 170mm | Primelok 200mm |
|-------------|-----------------------------------|------------|----------------|----------------|
| Fibre       | Eucalyptus Hardwood               | Newcastle  | >97<98         | >97<98         |
| Water Proof | Paraffin Melt Wax                 | Global     | >3<4           | >3<4           |
| PVC Spline  | Mineral Filled Polyvinyl Chloride | Global     | >1.8 <2.0      | >1.5<1.6       |
| Preprimed   | Vehicle and pigment               | Australian | <1             | <1             |
| Packaging   | Component                         | Source     | Amount         | Amount         |
| Spacers     | PC Recycled Carboard              | Australia  | >8 <9          | >8 <9          |
| Wrapping    | Linear Low Density Polyethylene   | Global     | >3<4           | >3<4           |
| Strapping   | Blue steel                        | Australia  | >1 <2          | >1 <2          |
| Pallet      | Wood                              | Australia  | <0.3           | <0.3           |
| Strapping   | Polymer                           | Global     | <0.1           | <0.1           |
| Labelling   | Ink                               | Global     | <0.0001        | <0.0001        |

#### **Product Functional & Technical Performance Information**

This section provides manufacturer specifications and additional information.

| Applicable standards             | As Tabled below         | v plus AS/NZS1859.4 and A                           | AS 1530.3.                       |  |
|----------------------------------|-------------------------|-----------------------------------------------------|----------------------------------|--|
| Product Name                     | Prir                    | nelok 170mm                                         | Primelok 200mm                   |  |
| Thickness (mm)                   |                         | 9.5mm                                               | 9.5mm                            |  |
| Length*Width (mm)                | :                       | 3660 x 170                                          | 3660 x 200                       |  |
| Thermal Properties               | Result                  | <b>Acoustic Properties</b>                          | System Dependant                 |  |
| Thermal Conductivity             | 0.22 W/m-K              |                                                     | d as part of wall systems to     |  |
| Thermal Resistance               | 0.04 m <sup>2</sup> K/W | meet specific performar<br>thermal and acoustically | <i>rated walls are required.</i> |  |
| <b>Durability Properties</b>     | Standard                | Result                                              | Requirement                      |  |
| Density                          |                         | 1000 kg/m <sup>3</sup>                              | > 750 kg/m <sup>3</sup>          |  |
| Dimensions                       | AS NZS 4266.1           | Pass                                                | ±2mm/m                           |  |
| Bending Strength                 | AS NZS 4200.1           | 32 MPa                                              | > 20 MPa                         |  |
| Modulus of Elasticity            |                         | 4500 MPa                                            | > 2900 MPa                       |  |
| Fire Properties                  | Standard                | Result                                              | Requirement BCA Vol 1            |  |
| Bushfire Attack Level            | AS 3959                 | ≤ BAL 19                                            | 1 -G5D32 & 2-H7D4                |  |
| Ave. Specific Extinction<br>Area | AS/NZS 3837             | 38.7 m2/kg                                          | 1-S7C4                           |  |
| Material Group Number            | AS/NZS 5637.1           | Group 3                                             | 1-S7C4                           |  |
| Early Fire Hazard Indices        |                         |                                                     |                                  |  |
| lgnitability                     |                         | 12                                                  |                                  |  |
| Spread of Flame                  | AS 1530.3               | 5                                                   | 1–S7C4                           |  |
| Heat Evolved                     | 10 1000.0               | 4                                                   | 1-0104                           |  |
| Smoke Developed                  |                         | 2                                                   |                                  |  |
| Fire Resistance Level            | AS1530.4                | Systems ≤120/120/120                                | 1-Spec C1.1                      |  |
| Combustibility                   | BCA Vol 1 C1.1          | Type C Compliant <sup>2</sup>                       | 1-S5C24                          |  |

<sup>&</sup>lt;sup>2</sup> A class 2,3 or 9c building with a rise in storeys of 2 may be of type C construction it requirements of C1.5 are satisfied.



#### **Scenarios Descriptions**

This section defines modelling stages scenarios A4 to D3 beyond actual operations in module A1 to A3.

| Module                                           | Type specified   | Amount    | Type specified        | Amount         |  |  |
|--------------------------------------------------|------------------|-----------|-----------------------|----------------|--|--|
| Construct                                        |                  |           |                       |                |  |  |
| A4 Transport<br>factory to depot<br>then to site | Sea Shipping     | 13,000    | 85% Capacity          | Full back load |  |  |
|                                                  | Interstate Rail  | 1,300 km  | 85% Capacity          | Full back load |  |  |
|                                                  | 25t semi-trailer | 200 km    | 85% Capacity          | No back load   |  |  |
| A5 Install                                       | VOCs indoors     | 0%        | Packaging & Waste     | 0%             |  |  |
| Building Modules                                 |                  |           |                       |                |  |  |
| B1 Use                                           | VOCs             | 0%        | No other flows        | 0%             |  |  |
| B2 Maintain                                      | Fit for purpose  | 100%      | Fit for purpose       | 0%             |  |  |
| B3 Repair                                        | Fit for purpose  | 95%       | Repair damaged        | 5%             |  |  |
| B3 Repair                                        |                  |           | Repaint 8 yearly      | 100%           |  |  |
| B4 Replace                                       | Fit for purpose  | 0%        | No other flows        | 0%             |  |  |
| B5 Refurbish                                     | Fit for purpose  | 0%        | Fit for purpose       | 0%             |  |  |
| B6 Energy use                                    | Off grid         | 0%        | Solar and wind energy | 0%             |  |  |
| B7 Water use                                     | Off grid         | 0%        | Rain and dew          | 0%             |  |  |
| End of Life Modules                              |                  |           |                       |                |  |  |
| C1 Demolish                                      | Fit for purpose  | Scrap 10% | No other flows        | 0%             |  |  |
| C2 Transport                                     | Fit for purpose  | Scrap 5%  | No other flows        | 0%             |  |  |
| C4 Disposal                                      | Fit for purpose  | Scrap 5%  | No other flows        | 0%             |  |  |
| Beyond System Boundary Modules                   |                  |           |                       |                |  |  |
| D1 Reuse                                         | Fit for purpose  | 75%       | No other flows        | 0%             |  |  |
| D2 Recover                                       | Fit for purpose  | 22.5%     | No other flows        | 0%             |  |  |
| D3 Recycle                                       | Fit for purpose  | 2.5%      | No other flows        | 0%             |  |  |



#### Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

| Global<br>warming<br>forcing Climate<br>Change                     | Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening " <i>climate emergency</i> ". |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ozone layer<br>depletion                                           | Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.                                                                                                                  |
| Acidification                                                      | Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of " <i>acid rain</i> " are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow worldwide.                                                                                                                                                                                                                                                      |
| Eutrophication<br>of terrestrial,<br>freshwater and<br>marine life | Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH <sub>4</sub> ) and phosphorus (P, PO <sub>4</sub> <sup>3-</sup> ) in rain run-off over-fertilised land catchments.                                                                                                                                                                                                                                                                                    |
| Photochemical ozone creation                                       | Tropospheric photochemical ozone, called " <i>summer smog</i> " near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.                                                                                                                                                                                                                               |
| Depletion of<br>minerals,<br>metals & water                        | Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement " <i>extinction rebellion</i> " calls on adults to secure climate, reserves and biodiversity for current and future generations.                                                                                                                                                                                                                                                                                                       |
| Depletion of<br>fossil fuel<br>reserves                            | Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching " <i>peak oil</i> " acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.                                                                                                                                                                                                                            |



### Impact, Input and Output Result Categories, Units and Methods

This section summarises impact and inventory result units with descriptions and references to methods.

| Impact & Input and Output Result Catego | ry Codes, U | nits and Met          | hods                               |
|-----------------------------------------|-------------|-----------------------|------------------------------------|
| Result                                  | Code        | Units                 | Description of Methods             |
| Climate Change Biogenic                 | GWP BIO     | kg CO <sub>2eq</sub>  | GWP sequestered from air [4]       |
| Climate Change LULUC                    | GWP LULUC   | kg CO <sub>2eq</sub>  | GWP land use & land use change [4] |
| Climate Change Fossil                   | GWP FF      | kg CO <sub>2eq</sub>  | GWP fossil fuels [4]               |
| Climate Change Total                    | GWP TOTAL   | kg CO <sub>2eq</sub>  | Global Warming Potential [4]       |
| Stratospheric Ozone Depletion           | ODP         | kg CFC <sub>11e</sub> | Stratospheric Ozone Loss [5]       |
| Photochemical Ozone Creation            | POCP        | kg NVOC a             | ₃ Summer Smog [6]                  |
| Acidification Potential                 | AP          | mol H⁺ <sub>eq</sub>  | Accumulated Exceedance [7]         |
| Eutrophication Freshwater               | EPFRESH     | kg P <sub>eq</sub>    | Excess freshwater nutrients [8]    |
| Eutrophication Marine                   | EP MARINE   | kg N <sub>eq</sub>    | Excess marine nutrients [9]        |
| Eutrophication Terrestrial              | EPLAND      | mol N <sub>eq</sub>   | Excess nutrients to land [8]       |
| Mineral Depletion                       |             | kg Sb <sub>eq</sub>   | Abiotic Depletion minerals [9]     |
| Fossil Depletion                        | ADP FF      | MJ <sub>ncv</sub>     | Abiotic Depletion fossil fuel [10] |
| Water Scarcity Depletion                | WDP         | $m^3$ WDP eq          | Water Deprivation Scarcity [11,12] |
| Input                                   |             |                       |                                    |
| Net Fresh Water Use                     | FW          | m <sup>3</sup>        | Lake, river, well & town water     |
| Secondary Material                      | SM          | kg                    | Post-consumer recycled (PCR)       |
| Secondary Energy Renewable Fuel         | RSF         | MJ <sub>ncv</sub>     | PCR biomass burnt                  |
| Secondary Energy Non Renewable Fuel     | NRSF        | MJ <sub>ncv</sub>     | PCR fossil-fuels burnt             |
| Primary Energy Renewable Material       | PERM        | MJ <sub>ncv</sub>     | Biomass retained material          |
| Primary Energy Renewable Fuel           | PERE        | MJ <sub>ncv</sub>     | Biomass fuels burnt                |
| Primary Energy Renewable Total          | PERT        | MJ <sub>ncv</sub>     | Biomass burnt + retained           |
| Primary Energy Non Renewable Material   | PENRM       | MJ <sub>ncv</sub>     | Fossil feedstock retained          |
| Primary Energy Non Renewable Fuel       | PENRE       | MJ <sub>ncv</sub>     | fossil-fuel used or burnt          |
| Primary Energy Non Renewable Total      | PENRT       | MJ <sub>ncv</sub>     | Fossil feedstock & fuel use        |
| Output                                  |             |                       |                                    |
| Hazardous Waste Disposed                | HWD         | kg                    | Reprocessed to contain risks       |
| Non-hazardous Waste Disposed            | NHWD        | kg                    | Municipal landfill facility waste  |
| Radioactive Waste Disposed              | RWD         | kg                    | Most ex nuclear power stations     |
| Components For Reuse                    | CRU         | kg                    | Product scrap for reuse as is      |
| Material For Recycling                  | MFR         | kg                    | Factory scrap to remanufacture     |
| Material For Energy Recovery            | MER         | kg                    | Factory scrap use as fuel          |
| Exported Energy Electrical              | EEE         | MJ <sub>ncv</sub>     | Uncommon for building products     |
| Exported Energy Thermal                 | EET         | MJ <sub>ncv</sub>     | Uncommon for building products     |

## WeathertexPrimelokWXN09to10EN15804EPD@Evah15Oct2024.docx



#### **Results Cradle to Grave within the System Boundary**

Table 1 lists A1 Resources, A2 Transport, A3 Manufacture, A4 Delivery, A5 Construct, B2 Maintain, B3 Repair, B4 Replace, B5 Refurb, C1 Demolish, C2 Transport and C4 Disposal results. Modules B1 Use, B4 Replace, B5 Refurbish, B6 Water use, B7 Energy use and C3 Processing waste had no flows or result.

#### Table 1 Impact & Input and Output Results/kg Functional Unit

| Burdens   | A1-3    | A4       | A5      | B2      | B3       | C1       | C2       | C4      |
|-----------|---------|----------|---------|---------|----------|----------|----------|---------|
| GWP BIO   | -2.4    | -1.9E-04 | 7.3E-02 | -0.10   | 7.2E-02  | -1.3E-19 | -5.4E-07 | 6.9     |
| GWP LULUC | -0.24   | 1.0E-09  | 0.37    | 6.2E-06 | 0.40     | 1.0E-08  | 7.9E-10  | 0       |
| GWP FF    | 2.3     | 1.9E-02  | 0.74    | 0.71    | 0.13     | 1.9E-03  | 6.1E-03  | 2.0E-05 |
| GWP TOTAL | -0.12   | 0.02     | 0.69    | 0.61    | 0.20     | 1.9E-03  | 6.1E-03  | 6.9     |
| ODP       | 2.4E-09 | 1.7E-13  | 1.1E-08 | 3.1E-09 | 3.1E-10  | 7.0E-17  | 1.1E-13  | 0       |
| POCP      | 8.1E-03 | 1.2E-04  | 3.8E-03 | 2.9E-03 | 4.8E-04  | 7.6E-06  | 6.0E-05  | 6.0E-07 |
| AP        | 2.6E-03 | 1.2E-05  | 1.5E-03 | 1.2E-03 | 1.6E-04  | 3.5E-06  | 5.0E-06  | 4.9E-04 |
| EPFRESH   | 2.2E-06 | 5.6E-10  | 6.8E-07 | 6.4E-07 | 1.8E-07  | 3.9E-13  | 3.1E-10  | 0       |
| EP MARINE | 4.5E-04 | 2.3E-06  | 3.0E-04 | 2.0E-04 | 2.8E-05  | 6.4E-07  | 9.4E-07  | 8.4E-10 |
|           | 1.6E-02 | 7.7E-06  | 2.1E-03 | 1.4E-03 | 8.2E-04  | 4.1E-06  | 3.2E-06  | 1.8E-08 |
|           | 4.0E-05 | 7.2E-06  | 1.5E-04 | 3.1E-04 | 1.8E-05  | 6.2E-12  | 4.0E-06  | 0       |
| ADP FF    | 1.6     | 2.2E-02  | 0.71    | 0.52    | 0.10     | 9.2E-04  | 7.5E-03  | 0       |
| WDP       | 3.1E-03 | 2.9E-06  | 6.3E-03 | 9.7E-03 | 2.0E-04  | 8.5E-08  | 1.4E-06  | 0       |
| Input     |         |          |         |         |          |          |          |         |
| FW        | 1.9E-02 | 1.8E-05  | 38      | 6.0E-02 | 1.2E-03  | 5.2E-07  | 8.7E-06  | 0       |
| SM        | 0.18    | 2.3E-06  | 7.8E-02 | 0       | 9.0E-03  | 1.6E-05  | 1.7E-06  | 0       |
| RSF       | 3.9     | 6.8E-06  | 0.20    | 0       | 0.2      | 2.9E-04  | 9.2E-05  | 0       |
| NRSF      | -0.12   | 3.0E-04  | 6.5E-02 | 4.2E-02 | -9.0E-03 | 1.3E-09  | 1.6E-03  | 0       |
| PERM      | 22      | 2.4E-03  | 1.2     | 1.1     | 1.1      | 2.0E-03  | 2.0E-04  | 0       |
| PERE      | 0.14    | 2.7E-03  | 2.2     | 0.56    | 1.2E-02  | 2.0E-03  | 1.9E-03  | 0       |
| PERT      | 22      | 7.4E-04  | 3.3     | 1.7     | 1.1      | 3.9E-10  | 4.8E-04  | 0       |
| PENRM     | 3.6     | 0.11     | 4.6     | 1.7     | 0.3      | 2.5E-04  | 3.7E-02  | 0       |
| PENRE     | 23      | 0.19     | 9.8     | 7.4     | 1.3      | 1.6E-02  | 6.3E-02  | 0       |
| PENRT     | 27      | 0.30     | 14      | 9.1     | 1.6      | 1.7E-02  | 0.10     | 0       |
| Output    |         |          |         |         |          |          |          |         |
| HWD       | 6.2E-04 | 3.7E-05  | 2.3E-03 | 9.9E-04 | 3.9E-04  | 7.2E-08  | 1.2E-05  | 0       |
| NHWD      | 0.13    | 3.1E-04  | 0.12    | 9.9E-02 | 5.7E-02  | 4.3E-06  | 9.6E-05  | 5.0E-02 |
| RWD       | 4.4E-18 | 1.0E-31  | 1.5E-16 | 2.5E-17 | 3.4E-19  | 5.5E-38  | 8.0E-32  | 0       |
| CRU       | 0.42    | 5.0E-06  | 2.1E-02 | 0       | 2.1E-02  | 5.0E-06  | 5.0E-06  | 0       |
| MFR       | 0.13    | 5.7E-06  | 8.5E-02 | 7.6E-02 | 6.6E-03  | 2.2E-05  | 4.0E-06  | 0       |
| MER       | 5.9E-05 | 2.3E-07  | 5.0E-03 | 3.4E-05 | 7.6E-06  | 1.3E-13  | 1.5E-07  | 0       |
| EEE       | 0       | 0        | 0       | 0       | 0        | 0        | 0        | 0       |
| EET       | 0       | 0        | 0       | 0       | 0        | 0        | 0        | 0       |



#### **Results for Module D: Beyond System Boundaries**

Table 2 lists results for D1 reuse, D2 recovery and D3 recycling benefit and load results beyond the system boundary.

#### Table 2 D1 to D3 Impact & Inventory Results/Functional Unit

| Table 2 D1 to D3 impact & inventory Results/Fun | ctional Unit |          |          |
|-------------------------------------------------|--------------|----------|----------|
| Result                                          | D1           | D2       | D3       |
| Climate Change Biogenic                         | 1.8          | 0.56     | 6.0E-02  |
| Climate Change LULUC                            | -0.10        | 5.4E-02  | 6.0E-03  |
| Climate Change Fossil                           | -2.3         | -0.67    | -5.7E-02 |
| Climate Change Total                            | -0.44        | -0.11    | 3.0E-03  |
| Stratospheric Ozone Depletion                   | -9.7E-09     | -1.2E-09 | -6.0E-11 |
| Photochemical Ozone Creation                    | -9.0E-03     | -2.5E-03 | -2.0E-04 |
| Acidification Potential                         | -3.0E-03     | -8.5E-04 | -6.4E-05 |
| Eutrophication Freshwater                       | -2.2E-06     | -6.4E-07 | -5.5E-08 |
| Eutrophication Marine                           | -5.7E-04     | -1.5E-04 | -1.1E-05 |
| Eutrophication Terrestrial                      | -1.3E-02     | -3.9E-03 | -3.9E-04 |
| Mineral Depletion                               | -1.5E-04     | -7.9E-05 | -9.9E-07 |
| Fossil Depletion                                | -1.8         | -0.49    | -4.1E-02 |
| Water Scarcity Depletion                        | -7.1E-03     | -2.9E-03 | -7.8E-05 |
| Input                                           |              |          |          |
| Net Fresh Water Use                             | -28          | -1.8E-02 | -4.8E-04 |
| Secondary Material                              | -0.19        | -4.0E-02 | -4.4E-03 |
| Secondary Energy Renewable Fuel                 | -3.1         | -0.89    | -9.9E-02 |
| Secondary Energy Non Renewable Fuel             | 0.04         | 1.8E-02  | 3.0E-03  |
| Primary Energy Renewable Material               | -18          | -5.3     | -0.56    |
| Primary Energy Renewable Fuel                   | -1.7         | -0.16    | -3.5E-03 |
| Primary Energy Renewable Total                  | -19          | -5.4     | -0.56    |
| Primary Energy Non Renewable Material           | -6.3         | -1.2     | -9.1E-02 |
| Primary Energy Non Renewable Fuel               | -25          | -6.9     | -0.58    |
| Primary Energy Non Renewable Total              | -31          | -8.1     | -0.67    |
| Output                                          |              |          |          |
| Hazardous Waste Disposed                        | -2.2E-03     | -3.6E-04 | -1.5E-05 |
| Non-hazardous Waste Disposed                    | -0.19        | -5.1E-02 | -3.2E-03 |
| Radioactive Waste Disposed                      | -1.2E-16     | -6.6E-18 | -1.1E-19 |
| Components For Reuse                            | -0.33        | -9.5E-02 | -1.1E-02 |
| Material For Recycling                          | -0.16        | -4.7E-02 | -3.3E-03 |
| Material For Energy Recovery                    | -3.8E-03     | -2.1E-05 | -1.5E-06 |
| Exported Energy Electrical                      | 0            | 0        | 0        |
| Exported Energy Thermal                         | 0            | 0        | 0        |
|                                                 |              |          |          |



#### **Results Cradle to Grave within the System Boundary**

Table 3 lists A1 Resources, A2 Transport, A3 Manufacture, A4 Delivery, A5 Construct, B2 Maintain, B3 Repair, B4 Replace, B5 Refurb, C1 Demolish, C2 Transport and C4 Disposal results. Modules B1 Use, B4 Replace, B5 Refurbish, B6 Water use, B7 Energy use and C3 Processing waste had no flows or result.

#### Table 3 Impact & Input and Output Results/kg Functional Unit

| Burdens   | A1-3    | A4       | A5      | B2      | B3       | C1       | C2       | C4      |
|-----------|---------|----------|---------|---------|----------|----------|----------|---------|
| GWP BIO   | -2.4    | -1.9E-04 | 7.3E-02 | -0.10   | 7.2E-02  | -1.3E-19 | -5.4E-07 | 6.9     |
| GWP LULUC | -0.26   | 1.0E-09  | 0.37    | 6.2E-06 | 0.40     | 1.0E-08  | 7.9E-10  | 0       |
| GWP FF    | 2.3     | 1.9E-02  | 0.64    | 0.71    | 0.13     | 1.9E-03  | 6.1E-03  | 2.0E-05 |
| GWP TOTAL | -0.13   | 1.9E-02  | 0.61    | 0.61    | 0.20     | 1.9E-03  | 6.1E-03  | 6.9     |
| ODP       | 2.4E-09 | 1.7E-13  | 8.9E-09 | 3.1E-09 | 3.1E-10  | 7.0E-17  | 1.1E-13  | 0       |
| POCP      | 8.1E-03 | 1.2E-04  | 3.2E-03 | 2.9E-03 | 4.8E-04  | 7.6E-06  | 6.0E-05  | 6.0E-07 |
| AP        | 2.6E-03 | 1.2E-05  | 1.2E-03 | 1.2E-03 | 1.6E-04  | 3.5E-06  | 5.0E-06  | 4.9E-04 |
| EPFRESH   | 2.2E-06 | 5.6E-10  | 5.9E-07 | 6.4E-07 | 1.8E-07  | 3.9E-13  | 3.1E-10  | 0       |
|           | 4.5E-04 | 2.3E-06  | 2.6E-04 | 2.0E-04 | 2.8E-05  | 6.4E-07  | 9.4E-07  | 8.4E-10 |
| EPLAND    | 1.6E-02 | 7.7E-06  | 1.9E-03 | 1.4E-03 | 8.2E-04  | 4.1E-06  | 3.2E-06  | 1.8E-08 |
|           | 3.9E-05 | 7.2E-06  | 1.3E-04 | 3.1E-04 | 1.8E-05  | 6.2E-12  | 4.0E-06  | 0       |
| ADP FF    | 1.6     | 2.2E-02  | 0.61    | 0.52    | 0.10     | 9.2E-04  | 7.5E-03  | 0       |
| WDP       | 3.1E-03 | 2.9E-06  | 5.3E-03 | 9.7E-03 | 2.0E-04  | 8.5E-08  | 1.4E-06  | 0       |
| Input     |         |          |         |         |          |          |          |         |
| FW        | 1.9E-02 | 1.8E-05  | 32      | 6.0E-02 | 1.2E-03  | 5.2E-07  | 8.7E-06  | 0       |
| SM        | 0.18    | 2.3E-06  | 6.7E-02 | 0       | 9.0E-03  | 1.6E-05  | 1.7E-06  | 0       |
| RSF       | 3.9     | 6.8E-06  | 0.20    | 0       | 0.20     | 2.9E-04  | 9.2E-05  | 0       |
| NRSF      | -0.12   | 3.0E-04  | 5.6E-02 | 4.2E-02 | -9.0E-03 | 1.3E-09  | 1.6E-03  | 0       |
| PERM      | 22      | 2.4E-03  | 1.2     | 1.1     | 1.1      | 2.0E-03  | 2.0E-04  | 0       |
| PERE      | 0.14    | 2.7E-03  | 1.8     | 0.56    | 1.2E-02  | 2.0E-03  | 1.9E-03  | 0       |
| PERT      | 22      | 7.4E-04  | 3.0     | 1.7     | 1.1      | 3.9E-10  | 4.8E-04  | 0       |
| PENRM     | 3.6     | 0.11     | 3.9     | 1.7     | 0.25     | 2.5E-04  | 3.7E-02  | 0       |
| PENRE     | 23      | 0.19     | 8.4     | 7.4     | 1.3      | 1.6E-02  | 6.3E-02  | 0       |
| PENRT     | 27      | 0.30     | 12      | 9.1     | 1.6      | 1.7E-02  | 0.10     | 0       |
| Output    |         |          |         |         |          |          |          |         |
| HWD       | 6.2E-04 | 3.7E-05  | 1.9E-03 | 9.9E-04 | 3.9E-04  | 7.2E-08  | 1.2E-05  | 0       |
| NHWD      | 0.13    | 3.1E-04  | 6.7E-02 | 9.9E-02 | 5.7E-02  | 4.3E-06  | 9.6E-05  | 5.0E-02 |
| RWD       | 4.3E-18 | 1.0E-31  | 2.3E-17 | 2.5E-17 | 3.4E-19  | 5.5E-38  | 8.0E-32  | 0       |
| CRU       | 0.42    | 5.0E-06  | 2.1E-02 | 0       | 2.1E-02  | 5.0E-06  | 5.0E-06  | 0       |
| MFR       | 0.13    | 5.7E-06  | 1.9E-02 | 7.6E-02 | 6.6E-03  | 2.2E-05  | 4.0E-06  | 0       |
| MER       | 5.5E-05 | 2.3E-07  | 7.8E-04 | 3.4E-05 | 7.6E-06  | 1.3E-13  | 1.5E-07  | 0       |
| EEE       | 0       | 0        | 0       | 0       | 0        | 0        | 0        | 0       |
| EET       | 0       | 0        | 0       | 0       | 0        | 0        | 0        | 0       |



#### **Results for Module D: Beyond System Boundaries**

Table 4 lists results for D1 reuse, D2 recovery and D3 recycling benefit and load results beyond the system boundary.

#### Table 4 D1 to D3 Impact & Inventory Results/Functional Unit

| Table 4 D1 to D3 Impact & Inventory Results/Fun | ctional Unit |          |          |
|-------------------------------------------------|--------------|----------|----------|
| Result                                          | D1           | D2       | D3       |
| Climate Change Biogenic                         | 1.8          | 0.56     | 6.0E-02  |
| Climate Change LULUC                            | -8.1E-02     | 5.9E-02  | 6.5E-03  |
| Climate Change Fossil                           | -2.2         | -0.67    | -5.7E-02 |
| Climate Change Total                            | -0.37        | -0.11    | 3.3E-03  |
| Stratospheric Ozone Depletion                   | -8.4E-09     | -1.2E-09 | -6.0E-11 |
| Photochemical Ozone Creation                    | -8.6E-03     | -2.5E-03 | -2.0E-04 |
| Acidification Potential                         | -2.9E-03     | -8.5E-04 | -6.4E-05 |
| Eutrophication Freshwater                       | -2.1E-06     | -6.4E-07 | -5.5E-08 |
| Eutrophication Marine                           | -5.3E-04     | -1.5E-04 | -1.1E-05 |
| Eutrophication Terrestrial                      | -1.3E-02     | -3.9E-03 | -3.9E-04 |
| Mineral Depletion                               | -1.3E-04     | -7.9E-05 | -9.8E-07 |
| Fossil Depletion                                | -1.7         | -0.49    | -4.1E-02 |
| Water Scarcity Depletion                        | -6.3E-03     | -2.9E-03 | -7.8E-05 |
| Input                                           |              |          |          |
| Net Fresh Water Use                             | -2.4E+01     | -1.8E-02 | -4.8E-04 |
| Secondary Material                              | -0.18        | -4.0E-02 | -4.4E-03 |
| Secondary Energy Renewable Fuel                 | -3.1         | -0.89    | -9.9E-02 |
| Secondary Energy Non Renewable Fuel             | 4.8E-02      | 1.8E-02  | 3.0E-03  |
| Primary Energy Renewable Material               | -18          | -5.3     | -0.56    |
| Primary Energy Renewable Fuel                   | -1.5         | -1.6E-01 | -3.5E-03 |
| Primary Energy Renewable Total                  | -19          | -5.4     | -0.56    |
| Primary Energy Non Renewable Material           | -5.7         | -1.2     | -8.9E-02 |
| Primary Energy Non Renewable Fuel               | -24          | -6.9     | -0.58    |
| Primary Energy Non Renewable Total              | -30          | -8.1     | -0.67    |
| Output                                          |              |          |          |
| Hazardous Waste Disposed                        | -1.9E-03     | -3.6E-04 | -1.5E-05 |
| Non-hazardous Waste Disposed                    | -0.15        | -5.1E-02 | -3.2E-03 |
| Radioactive Waste Disposed                      | -2.1E-17     | -6.6E-18 | -1.1E-19 |
| Components For Reuse                            | -0.33        | -9.5E-02 | -1.1E-02 |
| Material For Recycling                          | -0.11        | -4.7E-02 | -3.3E-03 |
| Material For Energy Recovery                    | -6.3E-04     | -2.0E-05 | -1.4E-06 |
| Exported Energy Electrical                      | 0            | 0        | 0        |
| Exported Energy Thermal                         | 0            | 0        | 0        |
|                                                 |              |          |          |



#### LCIA Methodology References

- [1] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations -Principles and procedures
- [2] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
- [3] GreenTag<sup>™</sup> 2023 EPD Program, Product Category Rules <u>https://www.globalgreentag.com/epd-program.html</u>
- [4] Intergovernmental Panel on Climate Change (IPCC) 2013, Assessment Report 5 Climate Change, Ch 8 Anthropogenic and Natural Radiative Forcing, Global Warming Potential 100-year, <u>http://www.ipcc.ch</u>
- [5] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014
- [6] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016 /j.atmosenv.2007.09.072
- [7] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416 Nov 2006 DOI:10.1065/Ica2005.06.215
- [8] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of LCA 13(6):477-486., <u>DOI:10.1007/s11367-008-0025-9</u>
- [9] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1<sup>st</sup> Ed
- [10] CML–IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.
- [11] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands
- [12] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8
- [13] Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative
- [14] Di Sacco, A., et al., Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery & livelihood benefits. Global Change Biology, 2021. 277: p.1328-1348. DOI <u>10.1111/gcb.15498</u>
- [15] IPCC, Assessment Report 6 Climate Change 2021: The Physical Science Basis. https://www.ipcc.ch/



#### Life Cycle Assessment Method

| LCA Author   | The Evah Institute is described at <u>www.evah.com.au</u> .                                                                                                                                                                                                                      |                                                           |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| Study Period | Factory data was collected from 2021 to 2023                                                                                                                                                                                                                                     | Evah Associates                                           |  |  |  |
| LCA Method   | Compliant with ISO 14040 and ISO 14044 Standards                                                                                                                                                                                                                                 |                                                           |  |  |  |
| LCIA method  | ReCiPe 2016 Life Cycle Impact Assessment (LCIA)                                                                                                                                                                                                                                  | ecopositive<br>futures                                    |  |  |  |
| Scope        | Cradle to fate including all supply chain phases and sta                                                                                                                                                                                                                         | ages depicted in Figure a.                                |  |  |  |
| Phases       | The LCA covered all known flows in all known stages of                                                                                                                                                                                                                           | radle to end of life fate.                                |  |  |  |
| Assumptions  | Use is to typical Australian wildlife conservation professional practice.                                                                                                                                                                                                        |                                                           |  |  |  |
| Scenarios    | Use, cleaning, maintenance plus disposal and re-use Facility Management Association denoted and publishe                                                                                                                                                                         |                                                           |  |  |  |
| Processes    | All known processes are included from resource acquuse, power generation & distribution, freight, refining, i scrap re-use, packing and dispatch, installation, use, mall significant waste and emission flows from all support make, pack and install the product are included. | ntermediates, manufacture,<br>a a intenance and landfill. |  |  |  |

Evah industry databases cover all known domestic and global scope 1 and 2 operations. They exclude scope 3 burdens from capital facilities, equipment churn, noise and dehydration as well as incidental activities and employee commuting. Electricity supply models in active databases are updated annually. As each project is modelled and new data is available the databases are updated. They are then audited by external Type 1 ecolabel certifiers. The databases exist in top zones of commercial global modelling and calculating engines. Quality control methods are applied to ensure:

- Coverage of place in time with all information for each dataset noted, checked and updated;
- Consistency to Evah guidelines for all process technology, transport and energy demand;
- Completeness of modeling based on in-house reports, literature and industry reviews;
- Plausibility in 2 way checks of LCI input and output flows of data checked for validity, plus
- Mathematical correctness of all calculations in mass and energy balance cross checks.

#### **Data Sources Representativeness and Quality**

Primary data used for modelling the state of art of each operation includes all known process for:

- Technology sequences;
  Reliance on raw and recycled material;
- Energy and water use; emissions;

Landfill and effluent, plus

Freight and distribution systems.

and

reduced

process

High

- Primary data is sourced from client annual reports and publications on corporate locations, logistics, technology use, market share, management systems, standards and commitment to improved environmental performance. Information on operations is also sourced from client:
- Supply chain mills, their technical manuals, corporate annual reports and sector experts, and
- Manufacturing specifications websites and factory site development license applications.

Background data is sourced from the International Energy Agency, IBISWorld, USGS Minerals, Franklin Associates, Plastics Europe, CML2, Simapro 9.5, Ecolnvent 3.9 and NREL USLCI databases plus:

- Library, document, NPI and web searches, review papers, building manuals and
- Global industry association and Government reports on best available technology (BAT).

For benchmarking, comparison and integrity checks inventory data is developed to represent BAT, business as usual and worst practice options with operations covering industry sector supply and infrastructure in Australia and overseas. Such technology, performance and license conditions were modelled and evaluated across mining, farming, forestry, freight, infrastructure and manufacturing and building industry sectors since 1995.

As most sources do not provide estimates of accuracy, a pedigree matrix of uncertainty estimates to 95% confidence levels of Geometric Standard Deviation<sup>2</sup> ( $\sigma_g$ ) is used to define quality as on page 3. No data set with >±30% uncertainty is used.



#### Supply Chain Modelling Assumptions

Australian building sector rules and Evah assumptions applied are defined in this section

#### **Scope Boundaries Assumptions and Metadata**

| Scope Boundant     | es Assumptions and Metadata                                                                               |
|--------------------|-----------------------------------------------------------------------------------------------------------|
| Quality/Domain     | National including Import and Export                                                                      |
| Process Model      | It is typical industry practice with currently most common or best (BAT) technology.                      |
| Resource flows     | LCI uses regional data for resource mapping, fuels, energy, electricity and logistics.                    |
| Temporal           | Project data collated over the previous 4 years represents averages over the last                         |
| Geography          | Jurisdiction is of the declared client, site, regional, national, Pacific Rim then Europe.                |
| Representation     | It represents the declared client, their suppliers and energy providers to each cradle.                   |
| Consistency        | All known operations are modelled according to operations with closest proximity.                         |
| Technology         | The industry supply chain modelled is typical recent Pacific Rim technology and                           |
| Functional Unit    | A 20 or 60 year period of typical service, use, cleaning and disposal/kg or m <sup>2</sup> applies.       |
| System Control     |                                                                                                           |
| Primary Sources    | Client and supplier mills, publications, websites, specifications and manuals are                         |
| Other Sources      | Any IEA, GGT, Simapro, IBIS, Ecolnvent data used is cited in the LCA reports.                             |
| Data mix           | Power grid and renewable shares are updated according to the latest IEA reports.                          |
| Operational        | Company data is used for process performance, product share, waste and                                    |
| Logistics          | Local data is used for power, fuel mix, water supply, logistics share & capacity.                         |
| New Data Entry     | New data is entered by current researchers at Malaika LCT, Evah and GGTI.                                 |
| Data Generator     | All via manufacturers, Evah, GGTI, IBIS and others is cited and in LCA reports.                           |
| Data Publisher     | Publishers include the Evah Institute, GGTI and designated clients only.                                  |
| Contributors       | All professional and personal contributors are cited in Evah & GGTI records.                              |
| Data Flow & Mix    |                                                                                                           |
| System Boundary    | All known resources and emissions are modelled from Earth cradle to end of life fate.                     |
| System flows       | All known flows are modelled from & to air, land, water & community sources & sinks.                      |
| Capital inclusions | Natural stocks $\Delta$ , industry stockpiles $\Delta$ , capital wear $\Delta$ , system losses and usage. |
| Arid Practice      | Dry technology adopted; Water use is factored by 0.1 as for e.g. mining.                                  |
| Transportation     | Distance >20% than EU; >20% fuel efficient larger vehicles, load & distance.                              |
| Industrial         | Company or industry sector data for manufacturing and minerals involved.                                  |
| Mining             | All raw material extraction is based on Australian or Pacific Rim technology.                             |
| Imported fuel      | The fuel mix is from nearest sources such as UAE, SE Asia, Canada or New Zealand.                         |
| Finishes           | Processing inputs with finishing burdens are factored in otherwise that is denoted.                       |
| Validation         |                                                                                                           |
| Accuracy           | $10^{th}$ generation study is ± 5 to 15% uncertain due to some background data.                           |
| Completeness       | All significant operations are tracked and documented from the cradle to grave.                           |
| Precision          | Tracking of >90% flows apply a 90:10 rule sequentially to 99.9% and beyond.                               |
| Allocation         | All is allocated to co products on reaction stoichiometry by energetic or mass fraction.                  |
| Burdens            | All known resource use from & emissions to community air land, water are included.                        |
| Plausibility       | Results are checked and benchmarked against BAT, BAU & worst practice.                                    |
| Sensitivity        | Calculated U is reported & compared to Bath U RICE & Ecolnvent libraries.                                 |
| Validity Checks    | Checks are versus Plastics Europe, Bath U RICE & or Industry LCA Literature.                              |



#### Further and explanatory information is found at

http://www.globalgreentag.com/ or contact: certification1@globalgreentag.com

